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Abstract

This thesis examines the application of artificial neural networks (NNs) to the problem of

dynamic flight control. The specific application is the control of a flying model helicopter. The

control interface is provided through a hardware and software test bed called the Fast Adaptive

Maneuvering Experiment (FAME). The NN design approach uses two NNs: one trained as an

emulator of the plant and the other trained to control the emulator. The emulator neural network

is designed to reproduce the flight dynamics of the experimental plant. The controller is then

designed to produce the appropriate control inputs to drive the emulator to a desired final state.

Previous research in the area of NNs for controls has almost exclusively been applied to

simulations. To develop a controller for a real plant, a neural network must be created which will

accurately recreate the dynamics of the plant. This thesis demonstrates the ability of a neural

network to emulate a real, dynamic, nonlinear plant.
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Neural Networks for Dynamic Flight Control

L Introduction

1.1 Overview

Automated aircraft control is obviously a vital concern to the US Air Force. Higher aircraft

performance requires an increasing reliance on automated control systems. No where is this more

evident than in helicopter control. Inherently unstable, helicopters are difficult to control under

the best of circumstances. When performance is stretched to the limit, instability problems are

often beyond the capability of the pilot.

With the abi)'•y to model non-linear, dynamic systems, artificial neural networks (NNs) are

well suited for application to automated helicopter control. The problem now becomes one of

designing, testing, and implementing a NN-based helicopter controller.

The heart of the problem lies in application of neural network-based control system to a real

plant. Research done by others (23, 11, 19) was accomplished using computer simulations of plants.

The difficulty in applying these approaches to the control of real plants is in the mathematical mod-

eling necessary to develop computer simulations. One approach, devised by Nguyen and Widrow

(13) holds more promise for application to a real plant. This self-learning system uses two NNs, one

to control the plant and another, a plant emulator, which is used to train the controller NN. The

emulator NN is trained to accurately reproduce the performance of a complex, nonlinear plant.

The Nguyen application also used a computer simulation of a plant. The actual plant dy-

namics were used in conjunction with the emulator to train the controller. In an application to

a real plant, mathematical representation of the plant dynamics will not be available to train the

controller NN.

1



In theory, a well trained emulator NN can successfully be used to train a controller NN.

Thus, the key to using this method is to successfully train a neural network to emulate a real,

nonlinear dynamic plant, such as a helicopter. Only after this research is accomplished can the

task of developing a controller NN be attempted.

Full scale research is both time consuming and costly. Simulations require extensive mathe-

matical modeling and computer resources. A more practical method is to scale down the system

to permit experimentation in a laboratory environment. Through the use of a flying, scale-model

helicopter, the development of a NN-based controller that can maintain a helicopter in a stable

flight configuration becomes much more realizable. The first step in this process is to fully emulate

the helicopter's performance parameters in a neural network.

1.2 Background

1.2.1 Neural Networks. An artificial neural network, sometimes simply referred to as

a neural net (NN), is a system designed to emulate the functions, or supposed functions, of a

biological neuron. While some may propose a NN is an artificial brain, the fact is there is no

conclusive evidence that an artificial neural net is in any significant way a representation of a brain.

However, NNs have been shown to possess unique characteristics such as the ability for function

approximation and the potential for parallel implementation (1:18).

A simple example of a neural net is the perceptron (Figure 1). The perceptron inputs are

weighted and then summed. With proper weights installed, the perceptron is capable of simple

classification tasks.

The natural evolution of the perceptron is the multilayer neural network (Figure 2). The one

property of multilayer neural networks which is central to most applications in control is that such

networks can generate input/output maps which can approximate, under mild assumptions, any

function with any desired accuracy (1:8).

2
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The process of establishing the proper weights for a particular task is called training. The most

common algorithm, or paradigm, used is called the backward propagation learning rule, sometimes

just "backprop" (16:54). The method basically compares the output generated with an arbitrary

set of weights to the set of desired outputs. The backpropagation algorithm corrects the weights

based on the difference between the actual and the desired output.

Z1  Z2  z m Outputs

wij

x1  x 2  XM Inputs

Figure 2. Multilayer Perceptron (16:54)

1.2.2 Helicopter Stability and Control. Helicopters are inherently unstable devices. The

design of the helicopter gives it a great deal of maneuverability, but also makes it very difficult to

4



T T T

- V -

(a) (b) (C) (d)

Figure 3. Suppose the hovering helicopter to experience a small forward velocity as at (a). In-
cremental flapping creates a nose-up disc tilt, which results in a nose-up pitching
moment on the aircraft...A nose-up attitude develops and the backward-incline thus
opposes the forward motion and eventually arrests it, as in (b)...A backward swing
commences.. .exerting a nose-down moment, as at (c). A nose-down attitude develops
and the backward movement is ultimately arrested, as at (d). The helicopter then ac-
celerates forward under the influence of the forward inclination of thrust and return to
the situation at (a). Mathematical analysis shows, and experience confirms, that the
motion is dynamically unstable, the amplitude increasing steadily if the aircraft is left
to itself. (20:127)

control. A classic remark made by a student following his first attempt to hover was,"It's like riding

a pogo stick over a floor covered with greasy ball bearings" (14:542). The instability of helicopters

is further illustrated in J. Seddon's description of Figure 3.

In certain situations, such as when carrying a suspended or slung load, the oscillations can

become much more pronounced. This situation develops due to two factors. First, the helicopter's

reaction to control is often delayed. In general, a helicopter without stability augmentation provi-

sions is not only unstable, but its response to control input is slow (14:542). Second, a pilot often

cannot physically react quickly enough to correct the problem. In human subjects carrying out a

task on command, activity in the association cortex takes place about 200 to 300 milliseconds prior

5



to movement (18:271). By the time a pilot reacts, he is often compoutiding rather than correcting

the problem. This situation is commonly referred to as pilot induced oscillation.

With reaction times measured in microseconds, a computerized controller is theoretically

capable of reacting much faster to these instability problems. However, conventional control theory

limits the application of traditional computerized flight control systems to helicopters.

1.2.3 Automated Flight Control. Complex automated control systems have been a neces-

sity in fixed-wing aircraft for years. For example, the F-16, intentionally designed to be unstable

to obtain better maneuverability, is uncontrollable without computer assistance.

This problem is compounded in helicopters. The most notable distinction which emerges is

that with fixed-wing aircraft, the stability equation leads to a simple physical interpretation of the

motion, but with the helicopter this unfortunately is not so, and as a consequence it becomes a

more complicated process. (20:126)

Traditional control theory has been inadequate for helicopter control except for limited ap-

plications. Autostabilizing systems have in the past used mechanical devices integral to the rotor

(20:132). These systems are primarily designed to relieve the pilot of constant minute control

corrections rather than act as true automated controllers.

The limitations in automated control are primarily due to the linear models used in conven-

tional control theory. The control relationships are broken up into a series of linear approximations.

As the system diverges further from the linear solution, the number of approximations increases.

This produces two drawbacks: first, the problem becomes more difficult to correctly quantify, and

second, the number of computations increases, slowing the response of the controller.

6
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1.3 Resources

1.3.1 Fast Adaptive Maneuvering Experiment (FAME). The Air Force Office of Scientific

Research, Mathematics and Computer Science branch, began the study of applying NN control

to helicopter flight systems. The objective of this research is to automatically detect and correct

flight instabilities such as those produced by an oscillating slung load. In the course of its efforts,

AFOSR developed a small-scale test bed designed for NN experimentation called the Fast Adaptive

Maneuvering Experiment (FAME).

The Fast Adaptive Maneuvering Experiment (FAME) is designed to provide neural network

(NN) researchers with a physical, non-linear system of modest dimensionality with coupled dynam-

ics (5:5). Developed by Dr. Kenneth Hintz at George Mason University under contract by AFOSR,

FAME consists of a Kalt Whisper electric helicopter, an instrumented Flitemaster Jr. flight stand,

and a Motorola MC68HCll microcontroller unit (MCU) (Figure 4).

FAME also includes software to send commands to the control servos on the helicopter and

to report helicopter attitude and position. Previous versions of the FAME software (3.0 - 5.0)

relied on control inputs from the keyboard. This made manual control haphazard at best. Version

6.0 uses the control pad from a commercially available radio control (R/C) flight simulator called

Skylark. This simulation package includes a control pad identical in configuration and operation to

a standard R/C transmitter. This allows the researcher to manually fly the helicopter with greater

precision. Precise control of the helicopter is necessary in order to gather accurate data needed for

training the NN.

1.3.2 Neural Network Design. Several options for development of the neural network

design are available. The two most promising are highlighted below.

Neural Graphics. Neural Graphics is a neural network simulator developed

by Gregory Tarr during his Ph.D. dissertation (21). The initial plan was to use this software in
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Figure 4. FAME System Components (5:6)
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developing the NN helicopter controller. This approach is advantageous since there is still some

corporate knowledge at AFIT about Neural Graphics. The primary disadvantage is that Neural

Graphics was designed to be a simulator and primarily is a learning tool. However, there has been

some work into practical applications of Neural Graphics.

Capt James B. Calvin, Jr. investigated classification of radar emitters using Intel's 80170NX

chip, the Electronically Trainable Analog Neural Network (ETANN) in his master's thesis (2).

In his work, he produced a modified version of Neural Graphics designed to simulate ETANN, a

hardware-based neural network. He could produce the NN weights and run ETANN simulations

by using Neural Graphics.

One approach is to follow Capt Calvin's work and use Neural Graphics to simulate the

ETANN. By using this approach, it will be possible to solve the problem of producing an interactive

system using Neural Graphics. In addition, the helicopter NN control design could be developed

into an on-board NN controller by using the ETANN integrated chip. Although it is unlikely this

research will directly produce an ETANN implementation, planning along these lines will make the

eventual move to ETANN an easier task.

The ETANN has several advantages to software-based NNs. First, the ETANN is a much

faster system. The analog structure permits information to literally flow through the net rather

than be iteratively calculated by a computer. Second, since ETANN is an IC-based system, this

would make it much more suitable to an eventual on-board NN application.

The primary drawback is ETANN weights are essentially fixed and cannot be easily updated.

However, this should not pose a problem since the controller is not designed to be adaptive in real

time.

The primary difference between this research and Capt Calvin's is the use of an IBM-PC based

version of Neural Graphics, where Capt Calvin used the UNIX base system (Silicon Graphics). The

9



biggest drawback is the lower computational power of the PC when compared to Silicon Graphics.

The primary advantage is the PC is much less expensive and a more easily transportable system.

Mathematical Modeling Software. Another option is to use a mathematical

modeling program, such as MATLABO. This approach offers several advantages, including the

direct manipulation of vector and matrices. Since it has a command level interpreter, the code

does not have to be compiled prior to running. This allows changes to be quickly and easily

implemented. The primary drawback is MATLAB 0 is rather slow when placed in iterative loops,

such as those required in a NN implementation.

1.4 Assumptions

In any simulation, certain assumptions must be made. In this case, since the plant is a scale-

model of an actual aircraft, the primary assumption is the model will adequately represent a full

scale aircraft.

In particular, the effect of the instrumentation stand is considered to be minimal. While

this is probably not a valid assumption, anecdotal reports from AFOSR indicate the stand only

dampens the control response, making it perform somewhat more like a larger model helicopter.

Also, the assumption must be made that the helicopter can be controlled by a NN and that

the NN control will be faster than human control. As stated earlier, part of the controllability issue

is directly related to the human reaction time. The system must be capable of reacting faster if it

is to be useful.

This is a reasonable assumption when considering ETANN typically has propagation time of

6 microseconds (2:17). While the NN simulation on Neural Graphics or MATLAB® will be directly

related to processor speed and network size, it should be sufficient to exceed normal human reaction

time. Using an INTEL 386 based PC with a clock speed of 25 Mhz, it should be possible to obtain

a propagation time of less than 1 microsecond per node of the neural network.

10



1.5 Scope

The scope of this effort will be limited to the application of NN to dynamic flight control

using standard classical backpropagation paradigms (16). It will not investigate different methods

of backpropagation. Since the focus is on application to the control problem, it is doubtful whether

another approach is necessary. The choice of training method is primarily based on the speed of

training. The task here is to determine the feasibility of application of NNs to a control task.

Whether using standard backprop or some other method would be irrelavent to this research.

1.6 Approach

The first step in approaching this problem is to use the FAME apparatus to gather the

necessary training data for the NN. Manual control of the helicopter using the Skylark Simulator

control pad will generate the training data.

At some point, the choice of the best method of interfacing to Neural Graphics or MATLAB 0

must be made. There are several possibilities. The first is to integrate the FAME software and neu-

ral network software into a single, interactive program. This is a possibility since Neural Graphics

is C-based and MATLABS uses MEX-ifies to allow commands to be called in a C-based program.

The second choice is to use two computers, with NN software running independently of FAME.

However, this would seem an unreasonable demand on already limited resources. The last and

most reasonable alternative is to record training data using FAME, and then load the data into

the backpropagation routine to train the NN. Once trained, the NN weights would be loaded into

a forward propagation routine written into the FAME program.

The type and quantity of data required must be identified. The FAME test stand reports

pitch, roil, yaw and X-Y-Z coordinate position. This data will obviously be used in NN training.

However, necessity of the time derivatives of position inputs (velocity and acceleration, both linear

11



and angular) must also be considered. Another possibility is to use delayed input and let the NN

determine the time derived inputs.

As for the quantity of data, one rule states that using a minimum of three times the number of

input features will give a rough estimate of how many training vectors are needed per class (Foley's

rule) (16). This rule has been useful in pattern recognition problems using NNs, although it is still

not clear on the applicability to this particular control problem. In this particular research, the

quantity of data required will be determined experimentally.

1.7 Summary

A neural network is definitely a candidate for a flight control system. Its ability to model

nonlinear, dynamic systems is well documented. While others have approached the problem of NN

application to flight controls, they have only conducted limited simulations. None have applied

their research even on a small scale to an actual flying platform.

The most promising approach to developing a NN-based controller for a real aircraft is a self-

learning system. In this two-stage process, the key lies in the development of NN which accurately

reproduces its flight dynamics.

The NN research at AFIT has focused primarily on pattern recognition problems, which are

not, in general, directly applicable to control problems. On the other hand, the AFIT controls

research has not approached the possibility of using neural networks. Research into this helicopter

control problem can bridge the gap between these two areas, opening the door to new perspectives

and unique solutions.

12



I. Literature Review

This chapter examines some of the current literature in the area of neural network applications

to control problems. It begins by first reviewing the area of neural networks in controls in general,

then examines the application of NNs to the specific area of flight control.

The particular application of concern is NN control of a physically realizable system, in this

case, a flying scale model helicopter. This system is a particular challenge to automated control due

to the extent of nonlinear relations between control input and aircraft response. The ability of NN

to handle not only the nonlinearities of control, but to also "learn" the correct control maneuvers

has made it a prime candidate for a flight control system.

Other researchers have examined the issue of NN control of aircraft. Narendra and Mukhopad-

hyay developed a NN control system using the dynamics of a helicopter as the plant (11). In his

research, Schley used a simplified mathematical model of an aircraft landing in the presence of severe

wind gusts (19). Unfortunately, both applications have only examined computerized simulations

of aircraft.

2.1 Analysis and Application of Neural Networks for Self-Learning Control Systems

This section examines the self-learning neural network control system devised by Nguyen

and Widrow (13). In this system, two separate neural networks (NNs), a plant emulator and a

controller, are used. The plant emulator is first trained to predict the next state, or position, of

the plant based on control and present position inputs. During the controller training process,

the controller NN drives the trained emulator NN through a series of trials. In this process, the

emulator's final position error is backpropagated through the emulator NN to produce an error to

be used for the controller training.

The Nguyen system lends itself well to the problem of helicopter control. Since the emulator

fully parameterizes the plant, the necessity of precise control data is negated. That is, when using a

13



single NN, the controller network be trained in a single stage, requiring precise data on the control

inputs that would drive the plant to the desired final state. This necessitates precise manual flight

control, a rigorous and time consuming process requiring a highly skilled pilot.

This is similar to the controller developed for a turbogenerator by Wu and others (23). The

primary difference is the Wu emulator and controller are trained simultaneously in the case of the

turbogenerator. This control system uses two subnetworks, one for input-output (10) mapping and

the other for control. The 10 mapper, or neural network mapper (NNM), uses the errors between

the plant and the network output to update the training weights. Next the neural network controller

(NNC) uses the updated NNM weights to modify its own weights. However, this application is again

applied to a simulated plant.

2.2 Background: Truck Backer Upper

The controller in the Nguyen application backs a simulated tractor-trailer from some arbitrary

point to the final desired location and orientation at a loading dock. The objective is to train the

controller to produce the correct signal uk to drive the plant to the desired final state zd given the

current state of the plant zk (Figure 5).

The controller in this system is developed in a two-stage process. The first stage is a fairly

straight forward backpropagation problem. The emulator NN is trained to map the state and control

inputs to the correct next state of the plant. During training, the emulator NN is presented with a

series of uniformly distributed random inputs and corresponding outputs of the plant (Figure 6).

Using the error between the output of the network and the actual state of the plant, the emulator's

network weights are updated using a standard backpropagation algorithm.

Stage two of the process is training the controller NN (Figure 7). First, the controller ran-

domly drives the emulator through a series of K states. For each input from the controller, the

emulator produces the appropriate next state of the plant. Eventually, the emulator arrives at a

14
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Figure 7. Training the Controller with Backpropagation (13:20)

predetermined stopping point (the Kth state). It is at this point where the emulator's final state

is compared to the desired final state of the plant (position of the truck). Since there is no way to

directly compare the controller's output to the final state of the plant, the state error must back-

propagate through the emulator network in order to obtain the equivalent error at the controller

NN output. The equivalent error can then be backpropagated through the controller to determine

the appropriate weight updates.

During this process, it can be seen that the backpropagation through the emulator produces

two error vectors: the control error and the state error. That is, the backpropagation reveals what

control input should have been given and also what state, or position, was required to produce no

error. This can be clearly seen when assuming the control input and state input to the emulator

has no error. Then the output of the emulator would have no error and thus must be equal to the

desired final state. In essence, the error in the prior state tells what state the emulator should have

been in and the controller error tells the controller what it should have done.

16



2.3 Analysis

Up to this point, the process is fairly clear. Unfortunately, Nguyen purposely chose not to

detail the error backpropagation through the emulator. This is unfortunate in that the backprop-

agation algorithm in the article does not accurately describe the process. More commonly referred

to as back propagation through time (BPTT) (4, 8, 9, 15), it is not nearly as trivial a process

as Nguyen implies. In particular, Nguyen does not detail the necessity of recording the output of

the controller net at each time step during the training process. Without this information, the

backpropagation algorithm will not work.

A report by Michael Lehr contains a more detained explanation of BPTT (8). This report

clearly indicates the necessity storing the control output and hidden node outputs. Not only are

the output weights required, but the output of the hidden layers must be available. The article

mentions that the storage requirement can be lowered at the sacrifice of computations using the

forward propagation algorithm to obtain the output of the hidden layer.

If we examine the backpropagation algorithm, we find as the error is backpropagated through

each layer, the effect of the error decreases rapidly. Since BPTT essentially creates a neural net

with nk hidden layers, the impact of the error quickly becomes insubstantial'. The problem man-

ifests itself as a degradation of the error signal. As it backpropagates through layers of units its

magnitude decreases; thus, the units far from the output receive a small degraded signal and take

correspondingly longer to learn than those closer to the output (15:18). The same effect occurs

when backpropagating through the emulator to obtain the control equivalent error. The amount

of change to the controller weights will become almost infinitesimal.

Nguyen mentions the training method used involves starting close to the dock and then

gradually moving further away. Although he doesn't detail why he chose this method, it does

appear to be necessary when considering the backpropagation algorithm and the error propagation.

in is the number of layers in the neural net and k is the number of time steps.
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By starting only one or two states away from the final state, the final error has a much greater

impact on the overall weight changes. As the initial state is moved further away, the weights in use

are much closer to the final solution than those that would have been produced randomly. This

appears to be a necessity when using BPTT. If he had started training at a greater distance from

the dock, the backpropagation would have only had effect in the final two states. The error for

states prior to this would have been near zero. The effect would have been to greatly increase the

training time.

Subsequent correspondence with Derrick Nguyen (12) also revealed the details of backprop-

agation of the position error. When backpropagating, an equivalent error for the position vector

is obtained from both the emulator and controller NNs. The question was which error is used for

the prior state. The answer is both. The sum of both equivalent errors is fed to the previous

state. Since the output of the previous state is connected to the input of both the emulator and

the controller, the error at the output of a node is the weighted sum of the errors of all the nodes

to which it is connected in the next layer. In this case, this would be both the position vector in

the emulator and the controller. As it turns out, an analysis using the standard backpropagation

algorithms would lead to the same result. The key is recognizing an output node of the previous

state's emulator has an unweighted connection to one node in each of the next state's controller

and emulator input layers (Figure 8).

For each training run, the weight changes for each state are calculated and then summed

to be added to the controller's weights. However, in Nguyen's implementation, the controller's

weights were updated as the changes are calculated. This would seem to cause problems since as

the error backpropagates through each stage, the original weights would be constantly changing.

But Nguyen points out that the changes for one run are so small as to not adversely effect the

process. It is the accumulated effect over a large number of runs that improves the controller's

performance.
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Figure 8. Equivalent Error Propagation. As the final position error backpropagates through time,
the error presented to the controller (6b) in state k is the equivalent error at the control
input to the emulator in state k. The error at the emulator in the previous state (k-
1) is the sum of the position equivalent errors from the controller (6bc) and from the
emulator (6..) in state k.
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Care should be exercised with this procedure. It is possible for the network to lock in a partial

solution. The net could be moving to a position in weight space where the error signals become

so small as to make further movement impractical. This may be a feature of updating the weights

after every example (15:18).

2.4 Backpropagation

Nguyen's application uses the Adaline (22) model for development of the neural networks.

Neural Graphics and other AFIT applications use a slightly different model. The primary difference

in the Nguyen application is that the Adaline uses the nonlinear function .f(a) = tanh(a) where

standard backprop uses the sigmoid function f(a) = 1/(1 + e-0).

The use of a sigmoid function should have little impact on the performance of the net, although

some researchers attest that the hyperbolic tangent function might converge more quickly since the

output range is -1 to +1, where the sigmoid ranges from 0 to +1.

2.5 Summary

The need to meet demanding control requirements in increasingly complex dynamical control

systems under significant uncertainties makes neural networks very attractive. Their ability to

learn, to approximate functions, to classify patterns, and their potential for massively parallel

hardware implementation are the key characteristics. (1:8)

The Nguyen approach to developing a NN-based controller is the most appropriate for a

flight control system. The emulator NN will fully parameterize the helicopter, negating the need

for precise control data.

This method also presents implications to the development of simulator systems. The emu-

lator completely parameterizes the plant without using mathematical derivations. A simulation of
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the device is possible since a complete I/O mapping is produced. Control inputs to an emulator

NN will produce an accurate representation of the plant response.

While the training process may at first appear to be complex and time consuming, the final

controller will consist of only a single multilayer NN. Lending itself to parallel hardware implemen-

tation, such as ETANN, the NN-based controller can react much faster than a conventional control

system.
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III. Methodology

3.1 Introduction

As mentioned in Chapter II, the Nguyen emulator/controller approach to developing a NN-

based controller will be used in this research. However, prior to any attempt at developing the

controller, an accurate emulator NN must be created. The development of the helicopter emulator

will be approached in a two-stage process. The initial development of an emulator will focus only

on the tail rotor of the helicopter. Using this simpler problem, the neural network design and

training process can be refined prior to attempting the more complicated task of emulating the

entire helicopter in the second step.

3.2 Stage One - Tail Rotor

The development of the emulator for the tail rotor is approached in a similar fashion to

Nguyen's truck backer-upper. Since the FAME apparatus is capable of recording both input control

and output position information, it is possible to record changes in the yaw position as the tail

rotor control inputs are manipulated. Using this data, the emulator can be trained.

Initially, this approach included the use of PC Neural Graphics as the NN design and im-

plementation software. It was later determined MATLABO would be a more suitable design and

experimentation tool. MATLAB@ is especially efficient at processing vector and matrix informa-

tion. The backpropagation equations (16) were easily converted into vector and matrix format (see

Appendix C).

3.2.1 Emulator Development. The first attempt at development of a NN control system

focuses only on the tail rotor control surface. Examination of a single control surface reduces the

number of input and output parameters, thereby reducing the size and complexity of the network.
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Figure 9. Tail Rotor Position. The tail rotor position (0) depends on the force, or thrust, exerted
by the tail rotor. The thrust is a function of the tail rotor blade pitch, or rudder (r)
and the throttle setting (t).

The emulator NN is designed to map the input functions of state and control vectors to the

output state vector. In this case, it was obvious the control vector would consist of at least the

throttle setting and tail rotor pitch, represented by the variables t and r. These two inputs control

the movement of the tail empanage (Figure 9).

The first step is to record data from the FAME apparatus. In order to isolate the tail rotor

and reduce effects of motor torque, the main rotor is disable. This is accomplished by removing

the gear from the main rotor shaft. Also, the training stand is adjusted so that movement about
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the pitch and roll axes is eliminated. Only yaw movement is permitted during this phase. Then,

using the FAME joystick control, the helicopter is maneuvered manually through the entire range

of throttle and rudder controls while measuring the yaw response.

The recorded data is normalized prior to training the network. The input and output data

for training the emulator is normalized between 0 and 1. Since the FAME apparatus reports the

various position and control information using an 8-bit binary number, the data is normalized by

simply dividing the recorded flight data by 255 (2 - 1).

It is necessary to determine the type of input and output data used in developing the con-

troller. Along with the control inputs, the FAME system records the tail position or yaw angle

with respect to time. With this timing information, it is also possible to derive the angular velocity

and acceleration of the tail section. Although off-line calculation of these derivatives is possible,

time delayed input samples should also provide similar results.

The initial set of input vectors selected included the throttle, tail rotor pitch, present yaw posi-

tion, and the prior two yaw positions. This is represented in vector format as [t, r, 9&, 9t-1, Ok-2]T.

Other input vector sets include the use of velocity and acceleration and also four and five position

delay. These configurations will be referred to as the three-state, v-a, four-state and five-state

models respectively.

3.2.2 NN Prototype. After recording, the data is transferred to a UNIX-based system

(Sparc Station) and the emulator NN is prototyped using MATLABS. Since MATLABO is de-

signed to process vector and matrix data, the backpropagation algorithms have been modified. The

vectors x (m x 1), a (n x 1), z (p x 1),and d (p x 1) are the input, hidden layer output, actual

output, and desired output vectors, respectively. The matrices Wi (n x (m+l)) and W. (p x

(n+l)) are the output and input weight matrices. The additional column in each weight matrices

is due to the bias term which is appended to the input and hidden layer vectors.
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Several different NN configurations are tested. The basic configuration consists of a mingle

hidden layer using a sigmoid function and a linear input and output layer (linear-sigmoid-linear)

(Figure 10).

a

I

Emulator

Figure 10. Linear-Sigmoid-Linear NN

The forward and backpropagation equations used are given below. A complete derivation can

be found in Appendix C. The input vector is represented by x, the output vector by s, the hidden

layer output by a and the desired output d. The equations for forward propagation through the

network are

z = Woa (1)

whereaik= [aJ (2)

and a = fh(Wi) (3)

and -- [1] (4)
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In this case, the vector valued function fb(f!) represents an elementwise operation on the

n x 1 vector a defined as

.(gL) = [(1 + e-(--))-', (I + e(aa))-., (I + e-(O))-T (5)

The weight update equations used for backpropagation are

w+ = OE (6)

OE
where E = -(d - z)iT (7)W;"

Wt= W - --OE (8)

where OE = --diag(a (1 - a))IQl]W (d - s):T (9)
aw •-

and 0 is the Hadamard, or array, product (10)

The training process will iterate through the forward propagation and weight update equa-

tions, comparing the output of the network for each input control and state vector to the actual

next state of the system. The error is used in the backpropagation equations to update the network

weights.

3.2.2.1 Testing. To test the emulator NN, exemplars of the tail rotor state, or

position, that have not been presented during training are fed through the forward propagation

network. The output of the NN is then compared to the actual response of the tail rotor to the

control inputs.

3.2.3 Controller Development. Continuing with the Nguyen approach, the output of the

controller net is fed to the emulator along with the state information. The output of the emulator

26



net is then compared to the desired final state of the plant. The error is backpropagated through

the emulator net and produces an equivalent error at the input to the emulator net, which is also the

output of the controller net. This equivalent error is then backpropagated through the controller

net and the controller weights are updated.

In this case, the problem should be simpler than the truck backer upper. Unlike the truck,

at each state in the tail rotor problem the desired state is always the same. At each state, the

controller will always attempt to minimize the angular error. In the truck backer upper, back

propagation through time (BPTT) is necessary since there is no direct path from a particular state

to the final desired state. In order to minimize the final error, the truck might initially have to

move in a direction away from the dock. In the tail rotor, each state has a direct path to the

final state. At any instance, the controller would seek to minimize the angular offset from the final

desired position. This removes the need for BPTT.

Nguyen also used the actual plant dynamics in the controller training process. This was

possible since the plant used was a simulation, not an actual tractor-trailer. At each time step

during forward propagation, the output of the controller was fed to both the emulator and the

truck simulator, producing both and estimated and an actual next state. The actual next state is

then presented to the controller. The estimate is not used until the final state. Thus, at each time

step, the controller has an accurate representation of the plant's state. In this research, and in the

real world, the plant dynamic will not always be available in mathematical form. The question

remains whether this process will work for a real plant, without using a mathematical representation

of its dynamics.

During the controller training process, a random present position vector is input to the

controller. This in turn produces some random control vector. The control vector along with

the present position vector is input to the emulator. The emulator NN then produces the next

position of the plant. The error between this next state and the desired final state of the plant is
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backpropagated through the emulator to obtain the equivalent control and position errors at the

input layer. The control equivalent error is backpropagated through the controller NN to update

the network weights. In BPTT, the position equivalent error at the emulator input and the position

equivalent error at the controller input would be summed to obtain the equivalent error for the

previous state.

This process will continue until the error is reduced to an acceptable level. This level must

be determined cxperimentally since, in most cases, the angular error cannot be reduced to zero in a

single time step. However, the marginal error, or changes between sequential error measurements,

should approach zero as the controller network becomes fully trained.

Testing the controller consists of presenting a random initial position to the controller NN

and then observing the output of the emulator NN. If adequately trained, the controller NN should

drive the emulator NN to the desired final position.

3.3 Stage Two - Helicopter Emulator

Development of the emulator for the remaining control and state inputs will be essentially

the same as the tail rotor development. Again, the flight data recorded from the FAME apparatus

is used to train the helicopter emulator. Exemplars now include all position information (pitch (40),

roll (p), yaw (0), x-coordinate, y-coordinate, altitude (z)) (Figure 11) and the all control inputs

(throttle, rudder, aileron, collective, cyclic) (Figure 12).

3.4 C.ntroller Implementation on Actual Helicopter

Once the NN controller has been fully developed and tested, the next step is controlling

the actual plant. FAME makes this fairly straightforward. Minor changes to the FAMEPC C-

code (Appendix A) used in FAME should allow incorporation of the NN controller. A forward

propagation routine would replace the manual control function "SetServoFromSticko."
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Figure 11. Helicopter Attitude and Position

3.5 Summary

The method of controller development devised by Nguyen can be directly applied to this

particular control problem. The first and most important step is to train and test the emulator

NN. The primary differences in the approach outlined here include the lack of necessity of BPTT

and the lack of the plant dynamics for comparison during controller training.

By first decomposing the overall helicopter problem into a tail rotor emulator and control

effort, the basic approach can be tested prior to attempting the more complicated task of emulating

and eventually controlling the entire aircraft.
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Tmnen*e stick movements Resultant helicopter movement
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Cyclic Forward cyclic pitches helicopter Reaw cyclic pitches helicopter
nose-down nosup

zr Left aileron rolls helicopter

Aileron to the left (rear view) Right (airon roll helicopterto the riht (rear view)

A

A

Left tail rotor yaws helicopter nose Right tail rotor yaws helicopter nose

Rudder left (and tall right) fight (and tail right)
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Increasing throttle/collective pitch Decreasing throtlle/co lective pitch
Throffie/Collectlve causes the helicopter to climb causes the helcopter to descend

Please note that this is only a guide to control functions and is not a training procedure

Figure 12. Transmitter Layout and Control! Punction (7:40)
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IV. Results

This chapter details the results of the experimentation outlined in Chapter III, documenting

the development of the emulator NN for the tail rotor and the helicopter through the use of the

Nguyen method. This chapter will also discuss some preliminary work done in the development of

the controller NN for the tail rotor.

4.1 Emulator

The emulator development of the tail rotor proved to be fairly straightforward. The various

neural network models were prototyped and tested, varying the design parameters of each, such as

number of hidden nodes, step size, and number of epochs. All resulted in accurate emulators of the

tail rotor. The helicopter emulator was developed using the three-state model prototyped with the

tail rotor. The results were equally as promising.

The emulator development consists of a two-phase process. Phase I concentrates only on

the tail section, limiting movement to yaw (angular offset) only. Phase II then models the entire

helicopter in a neural network.

4.1.1 Phase I. The primary step in developing a NN-based controller is to first design

and test an emulator NN. In order to simplify the problem initially, this first attempt will only

examine the tail section of the helicopter. This reduces the complexity and quantity of the input

and output variables.

Using the FAME apparatus, 937 time samples of tail rotor performance were recorded for

training and testing the emulator NN. Of these, the first 300 were used as training exemplars with

the remaining to serve as the test exemplars.

Various input and output parameters were tested to obtain the best emulation of the tail

rotor. The first configuration uses a three-state input vector, with the present and past two yaw

31



positions as inputs and the next yaw position as the output. Also tested were four and five-state

configurations, using the present yaw position along with the past three and four yaw positions.

The last configuration tested uses the yaw position, velocity and acceleration as input vector and

the next yaw position, velocity and acceleration as the output vector. These different configurations

were tested, varying the number of hidden nodes, step size (qj), and number of epochs.

4.1.2 Testing. In three-state configurations, the input vector to the net included the

control vector (throttle and rudder) and the state vector (current and past two yaw positions),

represented as x = [uTlsT]T - [t, rl Ok, 0k-1, eA- 2]T. The desired output of the net is the next

yaw position (0&+i) (Figure 13).

a

X t • :Z=Ok+l

Emulator

Figure 13. Emulator Neural Network
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Using MATLAB® to prototype the NN and to run the backpropagation routine, the emulator

turned out to be surprisingly accurate. After 10000 epochs over a training set of 300 exemplars,

the emulator NN was tested over the entire data set of 900 exemplars. The NN tracked the output

with amazing accuracy, considering over 600 of the exemplars were never presented for training.

The final configuration used was a two-layer network with fifteen hidden nodes. The output of the

network over the test set is shown in Figure 14.
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Figure 14. Tail Rotor Emulator Performance

This result in itself is remarkable. It shows a real, physical plant can be accurately modeled

through use of a NN. Prior effort in developing emulator NNs used mathematical models of the

plant. In this case, the actual plant was used to train the network.

The four and five-state configurations were also trained and tested in a similar manner. The

assumption was more information about the past performance should produce a more accurate
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emulator. However, both of these configurations produced results very similar to the three-state

configuration.

The emulator model using angular position, velocity, and acceleration was also prototyped

and tested. Initially, the results of the velocity and acceleration model (v-a) appeared to indicate

it was a better predictor. The yaw position was much more accurate that any of the delayed state

models. (Figure 15).
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Figure 15. Tail Rotor Emulator NN Performance (Velocity-Acceleration Model)

When compared to the yaw position error of the three state configuration, the v-a model

appear to have better performance at predicting the next yaw position (Figure 16). The mean

square error is defined as in the backpropagation equations, i.e. 111bfd - bfzll,
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Figure 16. Comparison of position error of the three-state and velocity-acceleration models of the
tail rotor emulator NN

At first it would appear the velocity-acceleration model performed much better than the

three-state delay model. The next yaw position error is much lower for the velocity acceleration

model. However, the next state vector of the v-a model consists not only of the yaw position, but

also the velocity and acceleration at that point. When summed, the entire error is approximately

the same as the three-state model (Figure 17).
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Figure 17. Comparison of the total error of the three-state and velocity-acceleration models of
the tail rotor emulator NN
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4.1.3 Phase II. The remainder of the helicopter control surfaces (aileron, cyclic, elevator)

and spatial responses (pitch, roll, X-Y coordinates, altitude) are included in the plant emulator.

Using the three-state delay configuration for the emulator. Again, the number of hidden nodes and

step size were varied during testing.

Again, using the flight data recorded from the FAME apparatus, the exemplar set consists

of a 500 sample segment from one set of data. The test set was 1131 data points from an entirely

different flight.

The emulator results for the helicopter were equally as promising as the tail rotor (Figure 18).

Most of the error appears to be concentrated primarily in the first and last one hundred or so samples

of the test set (Figures 19 & 20). Since the helicopter is actually flying only during the middle

portion of the test set, apparently the takeoff and landing performance is not fully parameterized

in the NN.

4.2 Controller Results

Development of the controller proved to be more problematic. After developing the necessary

MATLAB® program, the emulator was used to train the controller using the Nguyen method.

Initially, it appeared as if the controller was successfully trained. The error converged to

an acceptably low level. However, subsequent test proved the tail rotor controller converged to a

solution outside the range of the emulator input. Although the input data used for training the

emulator was normalized, there was no way to insure the control output from the controller would

be in the normalized range. Apparently, the controller found a solution outside the range of the

emulator input values.

Thought was given to implementing a hard limiting function at the output of the controller,

but this would not allow backpropagation due to the inability to differentiate this function. Another

option was to include a sigmoid function at the output to the controller. However, it was felt this
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would substantially reduce the impact of error as it backpropagated through the system, thereby

increasing training time and reducing accuracy.

Another possible solution was considered, but not investigated. If the control energy was

included in the error vector, this would essentially ensure the control output would remain in an

acceptable range for the emulator input. As the control energy increased, the error would also

increase. Nguyen discusses this point and indicates it can be easily added incorporated into the

backpropagation algorithm by adding the term -aiuk to the equivalent error (13:481). In this

instance, uk represents the control input at time k and a is scalar weighting factor.

4.3 Results

Artificial neural networks are capable of emulating dynamic non-linear plants with a high

degree of accuracy. Both the tail rotor and the more complex component of the helicopter were
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reproduced by the NN. This is a crucial step in the development of a NN-based controller. These

results also lead to the possible application of NNs to simulator development. The emulator NN

eliminates the need to develop complex mathematical representations of the plant in order to

simulate the plant. It only requires a sufficient type and quantity of examples of the plant's

behavior.
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V. Conclusions and Recommendations

5.1 Conclusions

The research conducted in the course of this thesis investigated the application of Nguyen self-

learning neural network for control to the specific problem of controlling a scale-model helicopter.

A critical requirement for the development of a control system is the successful emulation of the

plant in a NN. This process involves the correct selection of input/output parameters necessary to

correctly parameterize the plant.

Application of the method developed by Nguyen and Widrow was not applied to a real plant.

By using simulation, the mathematical characterization of the plant was available when training the

controller NN. The application of this method to a real plant does not permit the use of the plant

dynamics when training the controller. Instead, the emulator NN alone must fully characterize the

plant to be controlled.

5.2 Accomplishments

In this research, the following objectives have been successfully accomplished:

e It is possible for a neural network to accurately replicate the input-output mapping of a com-

plex, nonlinear real plant. The emulator NN replicated the performance of the tail rotor and

helicopter with a high degree of accuracy. This was accomplished without the development

of mathematical models of the plant. The emulator is dependent only on the size of the net

and training time. This ability to emulate a real plant has application not only to control

problems but could also have application to simulator development.

o The application of neural networks to the control of a dynamic, nonlinear real plant has

been investigated. Most previous efforts in NN-based control focused primarily on computer

41



simulations of aircraft and other devices. The use of a real plant, although scale, is one step

in the direction of application to full scale flight control.

"* The Nguyen technique was applied to a problem involving a real plant. This method involves

the use of two NNs and backpropagation through time (BPTT). The many vagaries in this

article, including the memory intensive nature of BPTT, were clarified and documented.

"* The Fast Adaptive Maneuvering Experiment apparatus was further developed and refined,

thereby reducing the workload and flying expertise required by an experimenter. This refine-

ment included numerous hardware and software modifications and development of documen-

tation.

"* MATLAB® proved to be a useful tool in NN research. All the equations derived in this

research were implemented in MATLAB®. Its ability to handle vector and matrix represen-

tations permits rapid prototyping of NNs. The interpretive language allowed modifications

to be quickly and easily implemented.

5.3 Recommendations

5.3.1 Controls Research. There remains a great deal of research remaining in the area

of neural networks for controls. In general, investigation into the control systems using neural

networks should continue. Specifically, research should continue to investigate Nguyen's approach

of developing a controller neural network. This should include a duplication of his experiments,

using both a computer simulation and an operational, scale-model tractor-trailer.

5.3.2 FAME. The Fast Adaptive Maneuvering Experiment is an excellent vehicle in the

investigation of control application to real plants. This system permits the direct application of

the plant dynamics rather relying on mathematical equations to model the system. Upgrades in

the software and hardware of the FAME apparatus are continuously developed. GMU is currently

developing a free-flying version of FAME. Also, advancing technology in R/C flying is creating
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the opportunity for more accurate measurement of flight dynamics. The latest breakthrough is a

solid-state gyro system which is more precise by orders of magnitude than the present mechanical

versions.

5.3.3 Simulators. This research has also uncovered the possible application of NNs to

simulator development. The development of an emulator proves a complex, nonlinear plant can be

represented in a NN. With this input-output mapping, it should be relatively straightforward task

to develop a simulator based on a neural network.
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Appendix A. Software, FAMEPC Version 6.0

Minor changes to version 6.0 of the software included changing the directory paths of the

header files "pcdef.h" and "famedef.h". A small section of code was changed to select of COM 1

instead of COM 2 as the communications port interface to the MCU. Finally, the menu display was

changed to reflect the correct software version and to correct a spelling error.

It is not mentioned in any of the FAME documentation, but it is also necessary to include a

file called "generic.cal" in the same directory as FAMEPC.EXE. The program will run without it,

but it will not report the state variables.

A change was made in the timing function "DelayUntil()" in "ControlLoopo." This function

caused intermittent program lockup while attempting manually control the FAME helicopter. This

function was replaced with the C-standard function "delay(10)", which produces a time delay of

10 milliseconds. Unfortunately, this causes inaccurate timing data to be recorded in "filel.trn."

However, the data points are still recorded at even intervals of approximately 25 milliseconds.
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/I..**~***********e*************e*4,*******e******************************e*e**/

Is File Name: FANEpc.C
I* *I

/* Authors: Darrell Duane, Steve Suddarth and G-Z Sun */
/* Update History: Version 6.0, November 20, 1992 5/

/s Modified October 12, 1993 by Ronald E. Setzer
/* */

/, ss* indicates functions and their prototypes */

/* --- indicates ISRs 5/

Is *

*include <stdio .h>
#include <stdlib.h>
#include <dos.h>
*include <conio.h>
#include <float.h>
#include <ctype.h>
#include <bios.h>
#include <math.h>

#include "j:\vorkfile\borlandc\famedef.h" /*file path to header files*/
#include "j :\workfile\borlandc\pcdef.h"

/* BEGIN PROGRAM: BEGIN INITIALIZATION FUNCTIONS */

/s Initializes ISR for TX k RX over serial port of PC
/ssssssss*s***sss**sss**s**sssssssssssssesss***ss****s*s******s*ssssss*sssses/

void initializeISR(void)
{
oldserialint = getvect(SERIALINT); /s save the old ISR address */
setvect(SERIALINT,newserialint); /s attach the new ISR to the vector s/
outportb(MODEMCTL,(inportb(MODEMCTL) & OxEF I DTR I RTS I OUT2));
outportb(PIC01, (inportb(PICOI) k SERIALIRQ)); /* enable the 8259 inter s/
outportb(PICOO,EOI);
inportb(RXDATA);
inportb (INTIDENT);
inportb(LINESTATUS);
inport(MODEMSTATUS);

/s printf'," Serial port initialized.\n"); */

}

/s Restore the old ISR attached to the com that ve have used s/

void RestoreOldISR(void)
{

setvect (SERIALINT, oldsorialint);
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printf("Old 151 restored \n");

/* Function to initialize the UART, attach the new ISR, save the old 151 e

void InitSerialPort (void)

initserial .serial..Anitial-.bits .parity= PARITY-2 ? 3 PARITY
initserial. serial...initial-.bits.stopbits= STOPBITS-i;
initasrial .serial-.initial-.bits .vordlen= WORDLEN-5;
initserial serial-initial-bits.brk =0;

outportb (LINECTL, initagrial .serial-.initial-.char);
outportb(DIVLSB, (char) ((115200L/BAtID) & 255));
outportb(DIVMSB, (char) ((115200L/BAUD) >> 8));
initserial serial-initial-.bits .diviatch = 0;
outportb (LINECTL, initscrial .serial~initial-.char);
initializeISRO;

/* Initialized flags and semaphores for receiving data from ECu1

void InitRXparm(void)

RXstream=-FALSE;
RXindex=O;
outportb(LINECTL, (inportb(LINECTL) 10x80));

/* printf("DL.&B bit in LCR is set = 1"); */
/* printf("LCR = Ox/.x\n",inportb(LINECTL)); *1/* Line Control Register *
/* printf("BAUDO = Ox~x ",inportb(DIVLSB)); *
/* printf("BAUDI = Ox%x ",inportb(DIVMSB)); *

outportb(LINECTL, (inportb(LINECTL)&Ox7:f));
/* printf("DLAE bit in LCR is set = 0 11); *
/* printf("DATA = Ox~x\n", inportb(RXDATA)); *1/* Receive data value *
1* printf("LCR = Oxe/x\n", inportb(LINECTL)); */*/ Line Control Register *
1* printf("MCR = Ox%x\n". inportb(MODEMCTL)); /*1I Modem Control Register *
/* printf("IER = Ox~x\n', inportb(INTENABLE)); *//* Interrupt Enable

Register */
/* printf("LSR = Ox~x\n", inportb(LINESTATUS)); *1/* Line Status

Register *I
/* printf("MSR = Ox~x\n", inportbCNODEMSTATUS)); /*// Modem Status

Register Values *
/* printf("IID = Ox%x\n", inportb(INTIDENT)): */ /* Interrupt Identification

& Causes e
Zero.Xcord = 0;
Zero.Ycord = 0;
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Zero.Zcord = 0;
Zero.Pitcb = 0;
Zero.Roll = 0;
Zero.Yaw - 0;
Zero.Gyro - 0;
} /* end intitalization of RX parameters -/

/* END INITIALIZATION SECTION: BEGIN ISR S */

I* - ----------------------------------------------------
/* New communication interrupt service routine */
I* .----------------------------------------------------
static void interrupt far nowserialint(void)
{ char identreg;

identreg=inportb(INTIDENT);
switch (identreg)

case 4:
PCRXISR(;
break;

case 2:
printf("TX ISR");
break;

default:
printf("default int\n");
inportb(RIXDATA);
break;

}
outportb(PICOO,EOI);

}

/* END ISR'S: BEGIN FUNCTIONS TX */

/* -- - - - - - - - - - - -- - - - - - - - - - - - -- - - - - - - - - - - -

/* Initiates TX Sequence to the HCu

void TXit(void)

char extra;
int i;

/* delay(delaytime);
EnablePCRXinto;
while (getbit(inport (LINESTATUS),O))

{ extra=inportb(RXDATA);
printf("Cleared byte = Ox7x = '%c' from serial port RX buffer.\n",

(unsigned char)extra, extra);

}
while(getbit(inportb(LINESTATUS), 5)==0) {putch('w'); putch('!'); }

/* wait for TX to complete */
if (CommandChar>=REQ _DEFAULTTHROTTLE)
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{outportb(TZDATACoaundChar);
/* printf ("CharTled: Xu',Comand~har); e

Tltimembiostime(O,O);
Rlstream-TRUE; /* it is expected to receive a stream *
Rlindox-(KLEVATOR-1);

while (Rlstream)

( if( (biostime(OO0) > (Tltime + (8*FIFTY-.BIOS..MILLISECONDS))))
{printf("NAK \n");
ClearWorkVarO;

}/* end while Ristream e

else /* Transmit Servo Control String *
f Rlstreaiw.TRUE; /* it is expected to receive a stream e

RXindex=(ELEVATOR-i);
for~izELEVATOR; i<RUDDER; i++) /* Transmit Elevator thin Collective *

f
RXchar=TRUE;
outportb (TXDATA,ReqBuff[iJ);
Tltimeubiostime(O, 0);

/* delay(20); REMOVE THIS DELAY WHEN RESTORING RI FUNCTIONH!!!
while (Richar)

f if( (biostimeCOO) > CTltime + (S*FIFTY_.BIOSMILLISECONDS))))
f printf("NAI( \n");

ClearWorkVaro;

} * end while RXchar *
} 1* end for() */

outportb(TXIDTA ,ReqBuff [RUDDERJ);
/* printf("CharTled: Xu",CommandChar); *

Tltime=biostime(0,O);

while (RXstream)
{ if( (biostime(0,0) > (Tltime *(8.FIFTY-BIOS-MILLISECONDS))))

( printf("NAIC \n");
ClearWorkVaro;

} * end while RXstream *
}/* end Else Transmit Servo Control String S

CommandChar=SERVO-.CONTROL;
I /* end Tlit */

/* END TX DATA: BEGIN FUNCTIONS FOR RI DATA 5
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I. Receiving from EVI ISR: Ensures no errors then passes to CharRIC)0
*- - - -- - - - -- - - - --- - - - - - - -- - - - - - - - -- - - - - - - -

void PC-.RX-.ISR(void)
{WorkRldatauinportb(UXDATA);
/* putch(WorkRldata); putch('*'); display values received from EVE o
WorkLinestat-inportb (LINESTATUS);

if( (getbit(WorkLinestat ,3) taO)11I(getbit(WorkLinestat ,2) !O)lII
(getbit(WorkLinestat,i) 'a))
J ClearWorkVaro; printf("RX EUOGR:Xu\n" ,(unsigned char)WorkLinestat);}
/* Error = TRUE 0

else
CharRXzO;

} I end RX ISR 0

/0-------------------------------------------------------------------------------------/

/* Function to receive data from the BC11o

void CharRX(void)

Rlindex4+;
/* putch(WorkRldata); o

if (CommandChar>=REQ-.DEFAULT-.TEROTTLE)
avitch(CommandChar)

case SER-REQ:
case REQ..DEFAULT.THROTTLE:
case REQ-.DEFAULT-SER-.VALS:

if (Rhindex < SER-.ACK-.STRING-.LENGTE- 1)
AckBuff [RXindex) 4lorkRldata; /* put Servo Settings into array to be

un-concatenated o
else

if (RXindex ==SERACK-.STRLI'ý.LENGTE- 1)
{if (WorkRidata !=Checksum(SER-.ACK-.STRIN&-LENGTH, Ack~uff))

/* Checks if the checksum is correct o
prin~tf("Checksum Error: lied Checksum,- %x,

Calculated Checksum = %x \n" ,WorkRldata,
Checksuim(SER..ACK-.STRING-.LENGTH, AckBuff));

else Rlstream7=FALSE;

else { putch('s'); putch('!'); ClearWorkVaro;}
break;

case POT-REQ:
if(Rlindex < POT-.ACK-.STRING..LENGTH-1)

Ack~uff ERlindex) =WorkRldata; /* put Potentiometer values into array to
be un-concatenated o

else
if (Rhindex -- POT-.ACK-.STRING..LENQTH-1)
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f if(WorkRidata !- Checksum(POT-ACK..STRIN(-LLUGM , AckBuff))
/* Checks if the checksum is correct */

printf (Checksum Error: Rled Checksum. U.x
Calculated Checksum - %x \n" ,WorkRXdata,

Checksul(POT-ACK..STRIIIG.LUGOTI, AckBuff));
else RlstreamumFiLSE;

else ( putch('p'); putch('''); ClearWorkVarO;
break;

default:
printf ( "Unknown Couimiazd fled to EVB requiring acknowledgement in CharR!:

Wun" ,CommandChar);
RlstreawmFALSE;
ClearWork~aro;

break;

} * end svitch()o
else /* POT ACK from Servo Control *

{ if (Rlindex < POT..ACK-.STRING-.LUNGTh-1)
AckBuff[RlindexJ.WorkRldata; I'. put Potentiometer values into array to

be un-concatenated 0

else
if (Rlindex ==POT..ACK..STRING-.ENGTH-1)

{if(Workflldata I.Checksum(POT-.ACK-STRING-LEIGTE, Ackfluff))
/* Checks if the checksum is correct 0

printf("Checksum Error: lied Checksum- %x,
Calculated Checksum - %x \n" ,WorkRldata,

Checknum(POT-.ACK..STRING-.LENGTH, Ack~uff));
else Ristream-FALSE;

else { putch(Oq'); putch('''); ClearWorkVaro;}
}/* end Pot Ack from Servo Control 0

RicharinFALSE;

I /* end function CharD! 0

/*-------------------------------------------------------------------
/* Initialize semaphores for Miing a new string from the RC11.

void ClearWorkVar (void)
{int i;
DisablePC...linto;
Rlstream=FALSE;
Rlchar-FALSE;
for (i0O; i<POT-.ACK..STRING-.LENOTH; i++) Ackfluff(iJ .0;

/* printf("CWV\n'9; *
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I. END TRASFE FUNCTION OPEATIONS: BEGIN POTUTIKETER & PSIIO DATA C

I. Castes values from the RI buffer & displays theu to the screen *

void DisplayPotData(unsigned char erav-pot)

cirscrO;
printf(C' a Pot - %3d W'. (int) raw-.pot [I-.POTJJ);
printf C' Az Pot = %3d \n". (int)rav..pot [AZ-.POT-J);
printf C' El Pot - %3d \n", (int)raw..pot EEL-.POT-DJ);
Printf(" Pitch Pot - %3d W'". (int)raw..pot (PITCN-PCT-.BJ);
printf("I Roll Pot a %3d \n". (int) raw-.potRDWLL-.PCOT-8.J) ;
printf("l Yaw Pot = %3d \n". (int)rav..pot(YAW-.POT-BJ);
printf (" Gyro - Xd\n", Concatlnt (raw..pot (FRDN..GYRDJISBJ,

rav..pot (FRWN.GYRALLSDJ));

/* Function that calculates the present state measured by the pats in rad C

void CalculateState(unsigned char *raw-vals, float *calastate)

double Bangle, AZangle, EMangle, Pit chAngle. Rollhngle, Yavhngle, Gyrolaw;

I. This raw inputs in radians *l
Bangle - (Islope *(double)(int)rav..vals[H-.POT-B1D - Hdco) )
AZangle - (AZslope *(double) ((int)rav..vals [AZ-.POT-..D - AZdco) )
M~angle -(ELslopo (double) ((int)rav..vals(EL..POT-BJ - ELdco) )
PitchAngle = (PitchSlope *(double)((int)rav..vals(PITCI..POT..3 - PitchDCO) )
Rollhngle = (RollSlope *(double) ((int)rav..vals (RWLL-POT-..D - RollDCO) )
Yavhngle a (YawSlope *(double) ((int)raw-.vals (YAW-.POT-..D - Yaw=~) );
GyroRaw = Concatlnt (raw-.vals (FROMGYRD...SBJ, raw~vals (FRON..GYROLSBJ);

cal-state(I..COORDJ - (float)( (double)LENGTE-.ARN1 * cos(Hangle)
+ (double)LENGTE-ARK2 * cos(Hangle + AZangle) * cosCELangle) )

cal-.state[Y-COORDJ - (float) ( (double)LENGTL-ARN1 * sin(Hangle)
+ (double)LENGTH-ARM2 * sin(Hangle + AZangle) * cosCELangle) )

cal-state(ALTITUDEJ - (float)( ((double)LENGTL-ARX2) * sin(ELangle) )
cal-.state[PITCEJ - (float)( RtoD * PitchAngle);
cal. state (ROLLJ = (float) ( RtoD * RollAngle);
cal..state [YAWJ - (float) ( RtoD * (Bangle + AZangle + YawAngle) )
cal-.state EYAW..DOTJ z (float) (GyroRaw-Gyroaff set);
I /4' end of function CalculateState e

void DisplaySt ate (float *cal-.st ate)

int i;
clrscro;
for (iO; i<NUM-.SENSORS; i++)

printf("%f \n",cal-.state[iJ);
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/* Loads calibration coefficients from generic cal

void Load~onericCal (void)
f
cal a fopen(Ilgeneric.cal','r");
fscant(cal,"lf %d ",kIslop., &Ndco);
faafcl"l %d ",&AZslope, &AMco);
fscanf(cal,Slf %d ",MEslop., &ELdco);
fscanf(cal,"%lf %d ",kPitchSlope, &PitchDCO);
fscanf(cal,"%lf %d "&RollSlope, &RollDCGi);
facanf(cal,"%lf %d ",&YavSlope, M~~OW);
fscanf(cal,"Xd ", &GyroOffset);

fclose(cal);

/*--------------------------------------------------------------------------------------/

/* This function loads default values for the servos.

void DefaultServoVals (void)

printf("\nSending Default Servo Values \n");
CoinandCharREQ-.DEFAULT-.Sfl..VALS;
flit 0;

Servo Vals [ELEVATC3RJ ELEVATOR-.DEFAULT..B;
Servo Val. [AILERONJ - AILERON-.DEFAULT..B;
Servo Vals (THRDTn.EJ Tfl7TrLE..DEFAULTDB;
ServoVals[COLLECTIVEJ-COLLECTIVE-DEFAULT-B;
Servo Vals (RUDDERJ = RUDDER-.DEFAULT_.B;

/ * end function DefaultServoValues *

/* Reads joystick once, sets servos to that value o

void SetServoFromStick(void)

int i. jval;
unsigned mnt joystick[5J;

readstick-.array(joystick);
for (i=O; i<NUALSERVOS; i++)

if ((i=THROTTLE) 11 (i=-COLLECTIVE))
jval m ( ((int) min-.b-.array~iJ)

+ conv-.factor~iJ * ((int)jmax~iJ - (int)joystick[iJ)) )
else

jval M (int) min..b-.arrayliJ)
+ conv-.factor[iJ * ((int)joystick~iJ - (int)jmin~iJ)) )
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jval u(Jval (int)maz.b..array~iJ ? jval : mz..b~array~iJ);
Roqiuffiti = (unsigned char) (ival > (int)min..b-.array~iJ ?

jval : in..b-.arrayEiJ);

/. ControlLoop takes generates one control vector and zzits it
/0 Also. it gets uncalibrated state, result is stored in Ackfluff C
I. previous state is stored in OldAckBu~ff0

void ControlLoop(char ControlSwitch)

mnt i;
for Uirn; i<POT.ACICSTRING-.LUGTMH; i++)

OldkckBuff~ij a AckBuff~iJ;
Comand~har - SERVO.COITROL;
if (ControlSwitch != P0')

switch(ControlSwitch)

case 'J': SetServoFromSticko; break;
default: break;

/0 DelayUntil(LastDolayTime + LOOP-.DELAY); Original code commented out *
dtlay(1O); /*delay 10 milliseconds; 12 Oct 93*/

else
InitDelayTiaero;

CloarWorkVarO;
Txito;

/e Takes state and servo data and does what we tell it to do 0

void ProcessStateData(char DataSwitch, unsigned char *Servos,
unsigned char eUncaiState)

float CalState[MNN.SEISORSJ;
switch(DataSwitch)

case 'U': DisplayPotData(UncalStat.);
break;

case 'DO: Calculat.State(UncalStat.,CalState);
DisplayState (CalState);
break;

case -'5': CalculateState(UncalstateCalStat.);
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StoreState(Servos, CalState);
came '0': break;
default: break;

I. Takes input from joystick* to set values for servos iteratively 0

void DoControlLoop(char ControlSwitch, char DataSwitch,
char WriteControlWithNewState, char *lnit~essage)
{int i;
printf("%s" ,Init~essage);

ControlLoop(' 0');
whileC 'kbhitO)
( ControlLoop(ControlSwitch);

if (WriteControlWithlewState)
ProcossStateData(DataSwitch, Req~uff, Ackluff);

else
ProcessStateData(DataSvitch, ReqBuff, OldAckiuff);

I
getcho;

} * End DoControlLoop *

Is END SERVO CONTROL OPERATIONS: BEGIN CALIBRATION COEFFICIENT OPERATIONS 0

void main()
( unsigned char MenuChoice (3J;
int Continuelt; /* used to allow for continuous operation 0

SerialPort-l; /* set port to cam 2; change to corn 1, 12 Oct 93 *
setup-.commn0; /* set up comunications 0

setup-.arraysO;

Continuslt=TRUE;
LoadGenericCal();

while(Continuelt)

printfC"\n Fast Adaptive Maneuvering Experiment -- PC Interface Version

printf(" By Darrell Duane, Steve Suddarth, G-Z Sun \n");
printf C" (Joystick control of servo values\n");
printiC" (G)--control v/ joystick .. store state in file 'filel.trn'Vi");
printf(" (C0alibrate joystick \n");
printf(" print calibrated (S~itate\n");
printf(" (Z) Repetitive potentiometer request (Q)uit Vn~n");
scanf("%ls", MenuChoice);
clrscro;
switch(toupper (MenuChoice (0J))
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-' - -. -- .• i •

{
case 'J':

DoControlLoop('J','0' ,TRUE,"Under joystick control\n");
/e Written by SCS and G-ZS e/

break;
case 'G':

DoControlLoop( 'J , 'S' ,TRUE, "Closed-loop joystick\n");
WriteState("filel.trn");
ClearStateRecs();

break;
case '•C:

cal-joystickO; /* Written by SCS and G-ZS 0/

break;
case IQ':

RestoreOldISRO; /* Restore the old interrupt service routine e/
Cent inueIt-FALSE;

break;

case 'I': /e Repetitvely request potentiometer value 0/

DoControlLoop( '0','U' ,TRUE,"Here's potentiometers, press any key\n");
break;

case 'I': /* Repetitvely request calibrated state 0/

DoControlLoop( '0' ,'D' ,TRUE, "Here's calibrated data, press any key\n");
break;

default:
printf("Invalid key hit #1-- reenter \n\n");

break;
} /* end switch() */

} /* end while loop for Continuelt =-- TRUE */

/* end main routine */

/e END MAIN FUNCTION: BEGIN MISCELLANEOUS FUNCTIONS */

/e Initialize comunications with the HC1i ef

void setup.comm(void)

disable(); /* General interrupt mask o/
DisablePCTXinto; /* Local TX mask 0/

clrscr);
InitSerialPorto); /0 Initialize the UART: baud, port...
TXindex=O; /* Initialize the TI parameters */
InitRXparu(); /e Initialize the RX parameters e/
DisablePC-RXinto;
enable(); /0 General interrupt mask e/

/o Sets up arrays for indexing of various servos, etc. 0/
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void setup..arrays (void)

int i;
FILE *joy-.cal-filo;

mi..b-array (ELEVATOR] ELEVATOR..LOWER-.LINIT-B.;
mAx..b.array (ELEVATOR] = ELEVLTOR-.UPPER-.LIMIT-B.;
mi..b-.array[AILERONJ = AILERON..LOWER-.LIMIT-.B;

maz..b-.array (AILERONJ = AILERONUPPU...LIMIT-.B;
min-.b..axray (TEROTILE] = THROTYLE-LOWER-.LIMIT-.B;
mAx..b-.array [TIROTTLEJ = THROTTLE-UPPER-.LIMIT-.B;
min..b..array (COLLECTIVE] = COLLECTIVE-LOWER-.LIMIT-B;
max-b-.array (COLLECTIVEJ = COLLECTIVE-UPPER-.LIMIT..B;
mi..b..array (RUDDERJ RUDDERLOWU...LIMIT..B;
mAx..b..array (IWDDER] = RUDDER-UWPER-.LINIT-.B;

/* Read in joystick calibration */

if ((joy..cal-.file = fopen(JOY-.CAL-.FILE, fir")) != 0)
/*added 1= 0 to remove warnings, 12 Oct 93*/

for Ui0; i<NUILSERVOS; i++)
fscanf(joy-.cal-file, "%d, %d, %f\n", kjmin~i], kjmax~i], kconv-.factor~iJ);

f close Cjoy-.cal-f ii);

/*------------------------------------------------------------------I
/* Calculates checksum of sequences: ignores last char ie ignores checksum *

unsigned char Checksum(imt stringlength, unsigned char CheckBuff[0)
f
unsigned char ChecksumResult = 0;
unsigned int sum = 0;
int i;
for(i0O; i < stringlength - 1; i++)

sum+= Check~uff [iJ;
ChecksumResult = (unsigned char)sum;
return ChecksumResult;
}/* end checksum function *

/*---------------------------------------------------------------/
/* concats 2 unsigned characters to an integer o

int Concatlnt(unsigned char MSbits,unsigned char LSbits)
{int result;
result-(unsigned int)MSbits;
rosult=(result << 8);
result~result+LSbits;
return result;
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/* Pauses for user to read message on screen. c

void WaitForEnter (void)

printf (" Press any key to begin.\n");
getcho;

I /* end function WaitForEnter()0

/* -------------------------------------------------------------------- c-

/* END MISCELLANEA BEGIN JOYSTICK *

void readstick(state)
stickstate *state;

unsigned int i, portval;

1* delayC2); REMOVED WHEN SYSTEM IS SLOWED DOWN 0
i= 0;
state->lx = 0;
state->ly = 0;
state->rx =0;
state->ry = 0;
asm cli; fo disable interrupts o
outportbCGANEPORT, 0);
while ( Cportval = inportb(GAMEPORT) &15)!=0 kk i++<3500)

if{ otak)(tt-r)+
if Cportvalk1) (state->rx)++;
if (portvalk4) (state->ry)++;
if Cportval&4) Cstate->ly)++;

asm sti; /* re-enable interrupts *
} * End readstick */

void readstick-.array(stick..array)
unsigned int *stick-.array;

stickatate state;
readstick(kstate);
stick-.array[ELEVATIRJ = state.ry;
stick-.array[AILERONJ = state .rx;
stick-.array[THROTTLEJ = state.ly;
stick-.array[COLLECTIVE] = state.ly;
stick..array[RUDDER] = state.lx;
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void cal-joystick(void)
{int i;

unsigned int joystick[5J;
FILE *joy-.cal-.file;

for U-=0; i<S; i++) {jmin~i) - 10000; jmax~iJ = 0;}
printf("Mov* both joysticks full range to calibrate, then press key");
while(!kbhito)

{ readatick..array( joystick);
for U=0; i<NUMLSERVOS; i*+)

{if (joystick~i] < juinti)) jmin~i] joystick~iJ;
if (joystick Li] > jmaxifi] jmaxr[iJ - joystick Li];}

getchO;

/* Find conversion factors from joystick to servos *
for (i=O; i<NUWLSERVOS; i++)
( conv-.factortiJ =

((float) (max-.b..array~iJ - min-.b-.array[iJ)/
(float)(jmax~iJ jmin~iJ));

joy-.cal-filo fopen(JOY..CILFILE, "w");
for (i0O; i<NUM-SERVOS; i++)

fprintf(joy-.cal-.fil., "%d. %d. Xf\n", jmin~iJ, jmAx[i],
conv..factor~iJ);

fclose(joy-.cal-.file);

/eeCreates a state record and updates the FirstStateRec *1
/**and LastStateRec pointers 0/

StateRec *Gimmelec (void)
J StateRec *ThieStateRec;

if((ThisStateRec = calloc(1 ,sizeof(StateRec))) !=0)
/*added != 0 to remove warnings, 12 Oct 93*f

ThisStateRec->NeztStateRec = OL;

it (FirstStatekec !=OL)
LastStateRec->NextStateRec = ThisStateRec;

else
FirstStateRec = ThisStateRec;

LastStateRec = ThisStateRec;

return(ThisStateRec);

char StoreState(unsigned char *ServoVals, float *CalState)
{StateRec *StoreStateRec;

mnt i;
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if ((StoreStateRec = GimmeReco) 0)/*added !=0, 12 Oct 93*/

StoreStateRec->TimelnSeconds
/s (float) (LastDelayTime- FirstDelayTime)/(float)SECOND-.TINE-.COUNT;*/
(float)(longtimer() - FirstDelayTime) / (float)SECOND-.TIME-.COUNT;
/* LastDelayTime replaced with longtimer to record time increments s

for~i=0; i<NUM..SERVOS; i++)
CStoreStateRec->ServoVals) Ei) ServoVals~i];

for(i=0; i<NUM-.SENSORS; i++)
CStoreStateRec->CalState) [iJ CaiState Ei);

return(TRUE);

else
return(FALSE);

void WriteState(char *TheFile)
{FILE *StateRecFile;
StateRec *ThisStateRec;
mnt i;
if (CStateRecFile = fopen(TheFile, "w")) !0)

ThisStateRec = FirstStateRec;
while (ThisStateRec)

fprintf(StateRecFile,"%6.2f, ",ThisStateRec->TimelnSeconds);
for~i=O; i<NUMLSERVOS; i++)

fprintf(StateRecFile, "%d, ",(ThisStateRec->ServoVals) [iD);
fprintf(StateRecFile ,"

for(i0O; i<NUM..SENSORS; i++)
fprintf(StateRecFile, "%7.3f, ", CThisStateRec->CalState) [i));

fprintf(StateRecFile, "\n");
ThisStateRec = ThisStateRec->NextStateRec;

void Cleaz-StateRecs(void)
{StateRec *NextStateRec;
while (FirstStateRec)

f
NextStateRec = FirstStateRec->NextStateRec;
free (FirstS-tateRec);
FirstStateRec = NextStateRec;

I
FirstStateRec =OL;
LastStateRec =OL;

/sssssssssssss~ssssss~ss TIMING STUFF ****s*e****'*
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#pragma inline
static void near dummy (void) {J
/* ----------------------------------------------------------------------- *

Name readtimer - read the complemented value of timer 0
Usage unsigned readtimer (void);
(from Borland C Library)
*-----------------------------------------------------------------------------------------------*

static unsigned near readtimer (void)

asm pushf /* Save interrupt flag */
asm cli /* Disable interrupts */
asm mov al,Oh /* Latch timer 0 */
asm out 43h,al

dummyo; /* Waste some time */
asm in al,40h /* Counter -- > bx */
asm mov bl,al /* LSB in SL

dummyo; /* Waste some time 5/

asm in al,40h
asm mov bh,al /* MSB in BH */
asm not bx /* Need ascending counter */
asm sti
asm popf /* Restore interrupt flag */
return( _BX );

unsigned long longtimer()
{unsigned long btime;

unsigned rtime;

btime = biostime(O,OL);
rtime = readtimerO;
if (btime!=biostime(O,OL))

return( (biostime(O,OL)<<16) I readtimero);
else

return( (btime<<16) I rtime);
I

unsigned long LastDelayTime = OL;
unsigned long FirstDelayTime =OL;

void InitDelayTimer(void)
{ LastDelayTime = FirstDelayTime = longtimero;
I

/*The function DelayUntil() causes intermittent lockups of FAMEPC. Replaced*/
/*with C function delay(. Requires changing LastDelayTime with longtimero*/
/*so that timing data is recorded in file±.trn. However, records time data */
/*recorded rather than time measured. R. Setzer, 12 Oct 93 s/
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unsigned DelayUntil (TargetTine)
unsigned long TargetTime;

if( CLastDelayTimeulongtimero) > Ta~rgetTime) /* check for wraparound*/
if (TargetTime-LastDelayTime > TNIRTY,.NINUTES..TIME)

while( (LastDelayTime=longtimerO) > THIRTYJ(IUUTES..TINE);
also
return(1); /* busted d:adline 5

while( (LastDelayTime=longtimero) < TargetTime) ; /* normal op. *
return(O);
I

unsigned long TimeSinceLastDelay(void)
f return (longtimer() - LastDolayTime);
I

float MS-.SinceLastDelay(void)
{return ( (float)TimeSinceLastDelay() / Cfloat)MILLISECOND-.TIME.COIJNT )

/* END PROGRAM *
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/i,-------.I.-.-------------------------------------------------------------

George Mason University 5/
/5 Department of Electrical and Computer Engineering */

/* File name: FAMEDEF.h
I* *I

/* Authors: Darrell Duane */
/* Update History: Version 6.0, October ?, 1992 C/

/* Header file for FAME operating program in M68HCIt */

/* -----------------------------------------------------------------------

#ifndef FALSE
#define FALSF t
#define TRUE oFALSE
*endif

/* masks used for bitwise operations on registers or variables
/s --------------------------------------------------------------------

#define MASKO OxFE /* 1111 1110 s/
#define MASKI OxFD /* 1111 1101 */
#define MASK2 OxFB /* 1111 1011 */
#define MASK3 OxF7 /* 1111 0111 s/
#define MASK4 OxEF /* 1110 1111 s/
#define MASKS OxDF /* 1101 1111 s/
#define MASK6 OxBF /* 1011 1111 s/
#define MASK7 Ox7F /* 0111 1111 */

#define CHASKO -MASKO /* 0000 0001 5/

#define CHASKI "MASK1 /s 0000 0010 */
#define CMASK2 "MASK2 /* 0000 0100 */
#define CMASK3 "MASK3 /* 0000 1000 */
#define CMASK4 "MASK4 /* 0001 0000 s/
*define CMASK5 'MASKS /* 0010 0000 s/
#define CMASK6 'MASK6 /* 0100 0000 s/
#define CMASK7 -MASK7 /* 1000 0000 */

#define ICINUM 0 /* number of input capture 1 s/
#define 1C2_NUM 1 /* number of input capture 2 s/
#define IC3_NUM 2 /* number of input capture 3 s/
#define NUNIC 3 /* number of input captures in HCII 5/

#define OCINUM 0 /* number of output compare I s/
#define OC2_NUM 1 /* number of output compare 2 5/

#define OC3_NUM 2 /* number of output compare 3 s/
#define OC4-NUM 3 /* number of output compare 4 */
#define OC5_NUM 4 /* number of output compare 5 6/
#define NUMOC 5 /* number of output compares in HCII 5/
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*define PA3 3 /* pin number on port A of
*define PA4 4 /* pin number on port A 0/

*define PA5 5 /* pin number on port A 0/

*define PA6 6 /* pin number on port A o/
*define PBO 0 /* pin number on port A ,/
*define PB1 1 /* pin number on port A
*define PB2 2 /e pin number on port A 0/

*define ICIRISE OxO /ebit pattern for ICI to trigger interrupt on
rising edge */

#define ICIFALL 0O20 /*bit pattern for ICI to trigger interrupt on
falling edge */

/* defines for initializing RAM ISR jump table 0/

-*-----------------------------------------------------------------------/

*define JUMPEXTENDED OxTE /*Assembly language inst. for ISR jump table*/
*define VSCI OxOOC4 /* Serial Communications Interface 0/

#define VSPI OXOOC7 /0 Serial Peripheral Interface 0/

*define VPAIE OlOOCA /* Pulse Accumulator
4define "vAO OXOOCD /* o/

*define VTOF OXOODO /* Timer Overflow 0/

#define VTOC5 OXOOD3 /* Output Compare 5
*define VTOC4 0XOOD6 /* Output Compare 4 0/

*define VTOC3 0X00D9 /* Output Compare 3 0/

*define VTOC2 OXOODC /* Output Compare 2 */
#define VTOCI OXOODF /* Output Compare I 0/

*define VTIC3 OXOOE2 /* Input Capture 3 */
#define VTIC2 0XOOE5 /* Input Capture 2 of
#define VTIC1 OXOOE8 /* Input Capture 1 /
#define VRTI OXOOEB /* Real Time Interrupt
*define VIRQ OXOOEE /* Maskable Interrupt Request o/
*define VXIRQ OXOOFi /* Non-Maskable Interrupt Request 0/

#define VSWI OXOOF4 /* Software Interrupt 0/

#define VILLOP 010OF7 /* Illegal Operation o/
*define VCOP OXOOFA /* Computer Operating Properly
#define VCLM OXOOFD /* Clock Monitor */
#define VRST $EOOO /* Restart Buffalo Monitor using assembly */

/* ..----------------------------------------------------------------------- f
Definitions for Handshaking

/* ..----------------------------------------------------------------------- f
/* Disable TX data buffer empty interrupt
*define DisableTXbuffEmptylnt(0 ClearBit (SCCR2_Add,7)
/* Enable TX data buffer empty interrupt 0/

#define EnableTlbuffEmptylnt 0 SetBit (SCCR2-Add,7)
/* Disable TX complete interrupt of

sdefine DisableTXcompletelnt 0 ClearBit(SCCR2_Add,6)
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/I Enable TI complete interrupt "/
*def ine EnableTXcompletelnt C) SetBit (SCCR2_Add, 6)
le Disable RP start interrupt *I
*define DisableoXint() ClearBit(SCCR2_Add, 5)
/* Enable RX start interrupt e/
d*dfine EnableRXint C) SetBit (SCCR2_Add, 5)

/* Disable idle line interrupt 0/

#define Disableldlelnt () ClearBit (SCCR2_Add, 4)
/e Enable idle line interrupt */
#define Enableldlelnt o) SetBit (SCCR2Add, 4)

#define SERVO-CONTROL 0

#define REQDEFAULTTHROTTLE 251
#define REQDEFAULTSERVALS 252

#define DUMMY 253

#define POTKEQ 254
*define SER-_EQ 255

#define NU._SERVOS 5
#define ZEROTH 0

#define ELEVATOR 0
#define AILERON 1
*define THROTTLE 2 /* index of servo control request chars */
*define COLLECTIVE 3
#define RUDDER 4
*define TO-GYRO 5 /* 1.5 ms pulse always to gyro ,/
#define FROM-GYRO 6 /* input from gyro (YAW-DOT) */

#define NUMPULSES 8 /* number of pulses to send */

#define ELEVATORS 1
#define AILERONS 2
#define TOGYROS 3
#define THROTTLES 4 /* sequence of servo control output compares */
#define COLLECTIVES 5
#define RUDDERS 6
#define FROMGYROS 7

#define AZPOTB 0 /* PE 4 */
#define ROLLPOTB 1 /* PE 1 */
#define ELPOTB 2 /* PE 5 */
#define YAWPOTB 3 /* PE 2 */
#define HPOTB 4 /* PE 6 */
#define PITCHPOTB 5 /* PE 3 */
#define FROMGYROMSB 6 /*PA 2 Used for setting DC offset of gyro time*/
#define FROOM.GYROLSB 7
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*define SERACKSTRINGLENGTH 6 /* 5 servo values & 1 Chocksum ./
*define POTACKSTRINGLENGTH 9 /* 9 pot bytes - 8 bytes + I Checksum */

unsigned char ServoVals[NUM~SERVOS];

unsigned char Ackruff[POTACKSTRINGLENGTH]; /* TX Bufter for EVB, RX Buffer
for PC */

unsigned char ReqBuff [SERAICKSTRINGLENGTE] ; /* TI Buffer for PC o/

int j; /* delay char for TI */

/* index variables */
signed char Rlindex; /* index of chars Rled from PC */
signed char TXindex; /* index of char to be Tfed in the buffer */
signed char Tiend; /* number of chars to TI */

/*eo****oooo** ************* * EVE CON STATUS REGISTERS ******ooeo*********/

unsigned char WorkSCSR; /* status register of the SCI
unsigned char WorkRldata; /* work received data 5/

/* Sephamores
/* TRUE if there is Noise,Framing error or an Overrun error
unsigned char NoiseFraming;
unsigned char Overrun;
unsigned char UnknownCommand; /* TRUE if an unknovn command char is attempted

to be Tied */
unsigned char OC0triggered;
unsigned char OC4triggered;
unsigned char OC~triggered;

u g char--------------------C-------t-----------g--------------------------

/0 Byte operation variables used to concatenate and cut bytes of
/1 ..----------------------------------------------------------------------- o
unsigned char LSBits;
unsigned char MSBits; /* LSbits or MSbits to concat or results */
unsigned int IntToSplit;
unsigned int Concat2B;

/* Global variables used to cut LongToSplit into 4 unsigned char */

unsigned char ByteO;
unsigned char Bytel;
unsigned char Byte2;
unsigned char Byte3;
long LongToSplit;

double DoubleToSplit;

unsigned char CommandChar = 'x'; /* Temp til chksum and stop */

1" ...-----------------------------------------------------------------------
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/* VARIABLES DEFINITION */
/* --- - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - -

/* VARIABLES RELATIVE TO THE INPUT CAPTURE FUNCTIONS */
/* ---------------------- -------------------------------------------------
*define RXRkANK 2 /* Rank of the IC used for Receiver *1
#define RXNUM (RXBLRNK+I) /* Number of the IC used for Receiver */
*define APM-CKANRANK 2 /* rank of the pulse that gives the APK *I
*define TCNT_.MAXVAL OxFFFF /* Maximum Yalue of the main 16 bit timer */
#define OVERFLOW.MAXVAL OxFF/* Maximum value of the 8 bit overflow *I

/* software counter (see type definition) */

*define SET-PIN TRUE /* used by to determine next state of output pin */
#define CLEAR-PIN FALSE /* ditto */

/* 2 mhz, 500 us per clock cycle of timer, so 2000 clock cycles I ms /
#define ONEMS 2000 /* nin acceptable time between two RI rising edges */
#define ONEPOINTTWOMS 2400
*define ONEPOINTTIREEMS 2600
#define ONEPOINT.FIVEMS 3000 /* Servo Midpoint */
#define ONE-POINTSEVENMS 3400
#define ONEPOINTEIGETMS 3600
#define ONEPOINTNINEMS 3800
#define TWOMS 4000 /* max acceptable time between two RX rising edges */

#define ONEMSB 0 / mrin acceptable time between two RX rising edges */
#define ONEPOINTTWOMSB 50
#define ONEPOINTTH REE_.MSB 75
#define ONEPOINTFIVEMSB 125 /* Servo Midpoint
#define ONEPOINTSEVENMSB 175
#define ONEPOINTEIGHTMSB 200
*define ONEPOINTNINEMSB 225
#define TWOMSB 250 /* max acceptable time between two RX rising edges */

#define INTERGROUPDURATION 24000 /* coefficient used to keep low time
consistent between each pulse. This
value is caluculated by

(4000) * 6 = 24000. */
#define ELEVATORLOWERLIMIT ONEMS
#define ELEVATORUPPERLIMIT TWOMS
#define AILERONLOWERLIMIT ONEMS
#define AILERONUPPERLIMIT TWOMS
#define THROTTLELOWERLIMIT ONEMS /* should get green light
#define THROTTLEUPPERLIMIT TWOMS /* should get red light */
#define COLLECTIVELOWERLIMIT ONEPOINTTWOMS /* controls bind
#define COLLECTIVEUPPERLIMIT ONEPOINTEIGHTMS /* controls bind
#define RUDDER_LOWERLIMIT ONEMS
#define RUDDERUPPERLIMIT TWOMS

#define ELEVATOR-LOWERLIMITB ONEMSB
#define ELEVATORUPPERLIMITB TWOMSB
*define AILERONLOWERLIMITB ONEMSB
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#define AILERONUPPERLIMITB TWOKSB
#define TUROTTLELOWERLIMITB ONEMSB /* should get green light /

*define THROTTLEUPPERLIMITB TWOKSB /* should get red light o/
#define COLLECTIVE_.LOVERLIKIT_B ONE_POINTTWOKSB /* controls bind of
*define COLLECTIVEUPPERLIMITB ONEPOINTEIGHT_.SB /I controls bind o/
*define RUDDERLOWERtLIMITB ONEISB
*define RUDDERUPPERLINITB TWOKSB

/* default servo values for initialization ef

*define ELEVATOR-DEFAULT ONEPOIITFIVEIS
#define AILERON-DEFAULT ONEPOINTFIVEMS
#define THROTTLEDEFAULT THROTTLELOWER-LIKIT
*define COLLECTIVE-DEFAULT COLLECTIVELOWERLIKIT
#define RUDDER-DEFAULT ONEPOINTFIVEMS
#define TOGYRODEFAULT ONEPOINTFIVE.MS

#define ELEVATOR._DEFAULTB ONEPOINTFIVEMSB
#define AILERONDEFAULTB ONEPOINTFIVEMSB
*define THROTTLEDEFAULTB THROTTLELOWERLIMITB
#define COLLECTIVEDEFAULT.B COLLECTIVELOWERLIMITB
#define RUDDERDEFAULTB ONEPOINTFIVEMSB
*define TOGYRODEFAULTB ONEPOINTFIVEMSB

/i ...-----------------------------------------------------------------------
/* 6811 Evaluation Board Hardware Definitions
/* ..----------------------------------------------------------------------- f
*define LATCHSCI Ox4000 /* address of flipflop to enable RX of data of

/, -----------------------------------------------------------------------
/0 Stand hardware definitions
/* ...-----------------------------------------------------------------------

*define LENGTHJ.NI 63.5 /* length of lover arm in centimeters of
#define LENGTHAIIN2 94.5 /, length of elevation arm in centimeters of
/* pot number match A/D block numbers but do not match Port E pin numbers*/

*define AZPOT 0 /* PE 4 of
#define ROLL-POT 1 /* PE 1 0/

#define ELPOT 2 /0 PE 5 0/

#define YAW-POT 3 /f PE 2 of
*define HPOT 4 /* PE 6 of
#define PITCH-POT 5 /* PE 3 of
*define GYRO-CAL 6
#define SHOWCALVALUE 7 /* used by FAMECAL.C to show cal values of
#define EDITCALVALUE 8 /* used by FAMECAL.C to edit cal values o/

#define QUIT-VALUE 9 /* used by FAMECAL.C to quit o/

#define GYROCALCOUNT 50 /* quantity of samples to take of gyro
values */

/* ---------------------------------------------------------------------- o
/c VARIABLES RELATIVE TO THE OUTPUT COMPARE FUNCTIONS *f
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I. --- - - - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - - -
/* Generates signal on a Port A pin & a Port B pin using one output C/
/* compare.
/* arrays are larger than necessary so that output block numbers can be */
/* used as indices. *I
/i. ................................--------------------------------------

unsigned int TestServo; /* Data Rled to be validated ./

unsigned int Thigh[NUMPULSES]; /* Buffer to store time high for each pin*/
unsigned int LowerLimits[NUMPULSES]; /* Lower limits for Servos 5/

unsigned int UpperLimits[NUMPULSES]; /. Upper limits for Servos s/

unsibIed int ServoStatus; /* indicates which servo is active */

/i ---------------------------------------------------------------------- l
VARIABLES RELATIVE TO THE INPUT CAPTURE FUNCTIONS ./

/* ...-----------------------------------------------------------------------
/* Awaits Rising or Falling edge on corresponding pin on port A and */
/* triggers ISR upon reciept. */
/* ---------------------------------------------------------------------- /

unsigned int TimeAtRiseICI; /* timer value when rise detected at PA2 */
unsigned int TimeAtFallIC1;
/* used to calculate value for unsigned int YawDot, below e/

/, --------------------------------------------------------------------- ,/
k/// CONVERSION

/* ..----------------------------------------------------------------------- /

/* Bit patterns written to ADCTL to trigger A/D converters 5/

#define PEOto3_ADCTL OxlO /* Scan=off, Multiple channel,
Convert Port E channels 0 through 3 *i

*define PE4to7TADCTL Ox14 /* Scan-off, Multiple channel,
Convert Port E channels 4 through 7 c/

#define PEO-ADCTL OxOO /* Value to load ADCTL with to measure pin PEO e/

*define PEIADCTL OxO1 /* Value to load ADCTL with to measure pin PEI 5/

#define PE2_ADCTL Ox02 /* Value to load ADCTL with to measure pin PE2 e/
#define PE3_ADCTL OxO3 /* Value to load ADCTL with to measure pin PE3 5/

#define PE4_ADCTL Ox04 /* Value to load ADCTL with to measure pin PE4 */
#define PES-ADCTL OxO5 /* Value to load ADCTL with to measure pin PE5 */
#define PE6_ADCTL Ox06 /* Value to load ADCTL with to measure pin PE6 5/

#define PE7TADCTL Ox07 /* Value to load ADCTL with to measure pin PE7 s/

/* ...---------------------------------------------- *-----------------------
/* variables relative to the position determination */
/* ---------------------------------------------------------------------- *
/* Stand potentiometer angles used to determine the Cartesian location */

double Hangle, AZangle, ELangle, PitchAngle, RollAngle, YawAngle;

int Gyro;
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/* Uncalibrated Stand potentiometer angles used to determine the Cartesian
location *

unsigned char Iraw, AZraw, ELraw, Pitchiaw, Rolliaw, Yawlaw;

/* First Voltage from AD converter n

unsigned char IvO, AZvO, ELvO, PitchV0, RoliVO, YawVO;

/* Second Voltage from AD converter *
unsigned char Hv1, AZv1, ELvi, PitchV1, RoliVi, YawVl;

*define DLY10O0x4E40 /e delay of 10 ms in term of main timer cycle e

/* Cartesian & Rotational position of the Helicopter 0

int Xcord, Ycord, Zcord, Pitch, Roll, Yaw;

unsigned int YawDot; /* difference between rise k fall times, above e

/0 IKC11 REGISTER VARIABLES 0

unsigned int *TCNT-.Add; /* main timer counter register
unsigned char *TNSK2-.Add; /* mAin timer interrupt mask 0

unsigned char *TFLG2-.Add; /* maintimer flag register 0

unsigned int *IC-.Add[NUflLICJ; /* pointer to input capture registers. o
unsigned int *OC-.Add[NUILOC]; /* pointer to output compare registers 0

unsigned char *TMSK1..Add; /* output compare and input capture int masks*/
unsigned char *TFLGI-Add; /* output compare and input capture flags 0

unsigned char *TCTL2-.Add; /* input compare trigger type */
wu'igned char *TCTL1-Add; /* output compare automatic pin actions e
unsigned char *OC1D-.Add; /* output compare 1 control: data to set into

PAx e/
unsigned char *OClLAdd; /e output compare 1 control: mask to set or not

PAz o
unsigned char *PACTL-Add;

/0---------------------------------- SCI REGISTERS --------------------------- o
unsigned char *SCSR-1.dd; /* status register of the SCI:f lags 0

unsigned char *SCDR-.Add; /* received and transmit data register 0

unsigned char *SCCR2-.Add; /e interrupt enables and state of SCI 0

unsigned char *SCCRL-Add; /e data format 8 or 9 bits
unsigned char *BAUD-.Add; /* baud rate register o
unsigned char *LATCL-SCI-.Add; /* software controllable latch to connect

pin PDO to I/0 connector o

/*-- Port A & B registers: for sending pulses using output compare ---
unsigned char *PORTB-Add;
unsigned char *PORTA-.Add;

/* -------------------------- Port D registers-------------------------.
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unsigned char *PORTD..Add; /* Port D 5

unsigned char *DDRD-.Add; /* Data Direction for Port D 5

unsigned char *SPCR-1.dd; /* SPI Control Register S

/* -------------------------- A/D registers ----------------------------
unsigned char *OPTION..Add; /* IClI registers
unsigned char *ADCTL..Add; /* Control Register for AID converter 5

unsigned char *ADR1-Add; /* loc where converted values are stored *
unsigned char *ADR2..Add;
unsigned char *ADR3t.Add;
unsigned char *ADR4-.Add;

/--------------- EEPROM programming registers-------------------*
unsigned char *PPROG..Add; /* HCii registers
unsigned char *CONFIG..Add;

/*------------------------------------------------------------------------------------------*

/* Declaration of the Hll register addresses defined in the library 5

/*c:\introl\kjh\kjhstart oill5

extern unsigned char HilPORTA; /* i/o Port A
extern unsigned char HiIPIOC; /* parallel i/o control register *
extern unsigned char HllPORTC; /* i/o Port C 5

extern unsigned char HilPORTE; /* i/o port B 5

extern unsigned char HllPORTCL; /* alternate latch port C 5

extern unsigned char EllDDRC; /* data direction for port C 5

extern unsigned char HilPORTD; /* i/o port D *
extern unsigned char HllDDRD; /* i/o data direction for port D *
extern unsigned char H1lPORTE; /* i/o port D
extern unsigned char HllCFORC; /* compare force register
extern unsigned char HilOCIM; /* OCI action mask register
extern unsigned char ElIOCiD; /* OCI action data register

extern unsigned mnt HiiTCNT; /* timer counter register
extern unsigned int HilTICi; /* input capture register I
extern unsigned int HliTIC2; /* input capture register 2 *
extern unsigned int HllTIC3; /* input capture register 3
extern unsigned int HilTaCi; /* output compare register I
extern unsigned mnt HilTOC2; /* output compare register 2
extern unsigned int HliTOC3; /* output compare register 3
extern unsigned int H1lTOC4; /* output compare register 4 5

extern unsigned mnt HllTOC5; /* output compare register 5

extern unsigned char HllTCTLI; /* timer control register 1
extern unsigned char HilTCTh2; /s timer control register 2
extern unsigned char HiiTMSKI; /* main timer interrupt mask 1I s
extern unsigned char HllTFLGl; /* main timer interrupt flag 1I 5

extern unsigned char HiiTMSK2; /* main timer interrupt mask 2 *
extern unsigned char HhlTFLG2; /* misc timer interrupt flag 2 *
extern unsigned char HllPACTL; /* pulse acc control register 5

extern unsigned char HllPACNT; /* pulse acc count register
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extern unsigned char Hh1SPCR; /* SPI control register 5/

extern unsigned char HI1SPSR; /* SPI status register 5/

extorn unsigned char H11SPDR; /* SPI data in/out S/

extern unsigned char Hi1BAUD; /* SCI baud rate control */
extern unsigned char H11SCCRI; /* SCI control register 1 /
extern unsigned char HNISCCR2; /* SCI control register 2 ,/
extorn unsigned char HK1SCSR; /* SCI status register
extern unsigned char HIISCDR; /* SCI data
extern unsigned char HIIADCTL; /, A to D control register */
extern unsigned char HIlADRI; /* A to D result I */
extern unsigned char 11.ADR2; /* A to D result 2 5/

extern unsigned char H11ADR3; /* A to D result 3 */
extern unsigned char H11ADR4; /* A to D result 4 5/

extern unsigned char Hl1OPTION; /* System configuration options e/
extern unsigned char HhlCOPRST; /* arm /reset COPtimer circutry s/
extern unsigned char H11PPROG; /* EEPROM programin control 5/

extern unsigned char H1IHPRIO; /* highest priority I bit and misc*/
extern unsigned char Hl1INIT; /* RAM /o mapping register S/

extern unsigned char Hi1TEST1; /* factory test control
/e COP, ROM, kEEPROM enables

extern unsigned char HilCONFIG;

*define ACIASRADDRESS 0x9800; /* ACIA status register e/
#define ACIADRADDRESS Ox9801; /* ACIA data register */

unsigned char *ACIASR-Add;
unsigned char *ACIADR-Add;

unsigned char getlt; /* Bytes vhere data is Rled */

PROTOTYPES
*/**********ee*******ee*************Se*ee*****e**5*55****5****5******5*5*****

/* functions for measuring pots and calculating positions and angles */

/* FAMEINIT.c: FAME Project General Initialization Functions */

void InitConstantVariables(void);
void InitPointer(void);
void InitADconverter(void);

/* FAMEINI2.c: FAMEMAIN Specific Initialization Functions */

void InitVectorTable(void);
void InitServos(void);
void SCI-initTX(void); /* initializes TX to PC
void SCI-initRX(void); /* initialize for reception over SCI */
void ACIA-init(void);
void InitOC(int OCnum, int Enable);
void InitICs(void);
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I. FANEISR.C ISB~s

void OCS-.ISR(void);
void ICL-ISR(void);

/* FANZXAIN.C: Transmission / Acknoulegeamnt prototypes

void DecodehndStoreServolyto(void);
void FillPotAckBuff(void);
void FillSerAckBuff(void);
void TlackBuff(void);
void ProcessWorkfldata(void);
/* imt main~int); *I
void putByte(unsigned char putlt); /* T~es byte to PC: Byte fled is found

in putlt *

/* FAJ4ELIB.C: functions for doing basic bit operations on register settings*/

void Splitlnt(int i); 1* function that calls asm function below *
int Concatlnt~unsigned char MSbi' i,unsigned char LSbits);
unsigned char Checksum(int; maxuri, unsigned char Checkkrray(J);
void ClearBit (unsigned char *pointer,int NumBit);
void ClearFlag(unuigned char *pointer,int NumBit);
void SetBit(unsigned char *pointer,int NumBit);
unsigned char GetBit(unsigned char *pointer~int NumBit);
unsigned char GetBitChar(unsigned char reg~int NumBit);

/* ASSEMBLY Routines *
void splitlnt(void); /* assy lang to prepare pos values for TX to PC *
void concatlnt(void);
void getByte(void); I. loops until Byte is R~ed: Byte is placed in getlt*/
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/*************s*********************************************************e*******/

/* Filename: PCdef.h Ver 5.0 , 1992 .1

/* definitions for FAMEPC.c .1

/***********s**********s.e********e sE*os *****************************e*e****/

unsigned char ServoIncENU_-SERVOS];
unsigned char EViservoVals[_NUMSERVOS];
void DefaultServoVals(void);
void VariableServoVals(void);
void UserEnteredServoVals(void);
void DisplayServoVals(void);
void DisplayEVBservoVals(void);
void EqualizeServoVals(void);

/*************r*******POTENTIOMETERS **********4s***/

int GyroRaw; /* raw value of gyro */

****************************** CALIBRATION *********************************

#define PI 3.14159265359 /* value for pi */
double PiOverTwo=1.5707963268; /* compute the constant for later use */
double PiOverFour=0.7853981634; /* compute the constant for later use
Idefine RADIANSTODEGREES 57.2957795131 /*conversion */
#define DEGREESTORADIANS 0.0174532925199
double RtoD = RADIANSTODEGREES;
float DtoR = DEGREESTO.RADIANS;

#define HANGLEO 0 /* calibration location 0 for H pot */
#define HANGLE1 (PT)
#define ELANGLEO 0
#define ELANGLE1 (-PiOverFour)
#define AZANGLEO 0
#define AZANGLE1 (PiOverTwo)
#define PitchANGLEO 0
#define PitchANGLE1 N/A /* this value prompted for from user */
#define RollANGLEO 0
#define RollANGLE1 N/A [* this value prompted for from user */
#define YawANGLEO 0
#define YawANGLE1 (PiOverTwo)
#define ATODERRORLIMIT 10 !* sum of max differences in four AID samples */

double Sslope, AZslope, Eislope, PitchSlope, RollSlope, YawSlope;
int Hdco, AZdco, ELdco, PitchDCO, RollDCO, YawDCO, GyroOffset; /*DC offsets*/

int PotChoice; /* Choice of potentiometer to calibrate */
int PrintValue; /* Value to print to screen when using Defines */

FILE *cal; /* file pointer for calibration coefficients */
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void LoadCalVals(void);
void SaveCalVals(void);
void DisplayCalVals(void);
void PrintPot~ptiorns(void);
void PrintOtheraptions (void);
unsigned char Keasur*Pot(void);
void EditCoofficients(void);
void InternalCal~void);
void CalibratoAngles(void);

/***********************POSITION*****************/

void DisplayCalPotData(void);

/*********************KEYBOARD CONTROL ***************

mnt ContinueKeyboard; /* indicates whether PC should continue accepting
keystrokes to vary servo control values. *

void KeyboardServoVals(void);

/***ss*s***s*********.*DYNAMIC CONTROL ************s**

int ContinueControl;
int UpdateStep; /* used to indicate point at which function is in for

varying transfer values real time *

typedef struct StateDummy{
float Xcord,

Ycord,
Zcord,
Pitch,
Roll,
Yaw,
Gyro; I STATE;

STATE Zero; /* Vector of Zeros *

STATE ElevatorDoub ,AiloronDoub ,ThrottleDoub, CollectiveDoub ,RudderDoub;
STATE Elevatorlnt ,Aileronlnt ,7Throttlelnt ,Collectivelnt ,Rudderlnt;
STATE ElevatorProp, AileronProp ,ThrottleProp ,Collect iveProp ,RudderProp;

STATE ElevatorDoubCr ,AileronDoubCr ,ThrottleDoubCr ,CollectiveDoubCr ,RudderDoubCr;
STATE ElevatorlntCr ,AileronlntCr ,ThrottlelntCr ,CollectivelntCr ,RudderlntCr;
STATE ElevatorPropCr ,AileronPropCr ,ThrottlePropCr, CollectivePropCr ,RudderPropCr;
STATE Doub,Int ,Prop;
STATE Present ,Desired;
STATE ErrorMinusOne ,ErrorMinusTwo ,ErrorMinusmhree ,ErrorMinusFour;

/* Prop serves as Error *
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STATE *ToChangeDoub, *ToChangelnt, *ToChangeProp;
STATE *ChangeRateDoub, *ChangeRatelnt, *ChangeRateProp;

FILE *Transfer;
void LoadTransferVals(void); /* also loads Change rates *1
void SaveTransferVals(void); /1 also saves Change rates ./
void DisplayTransferVals(void);
void DisplayChangeRates(void);
void Dtv(STATE *Displaylt);
void DisplayVector(STATE *todisp);
void DisplayError(void);
void EditTransferVals(void);
void Edit(STATE *toedit);
void UpdateTransferVals(void);
void CopyState(STATE *Copy, STATE *Original);
void Add(STATE *Equals, STATE *First, STATE *Second);
void Subtract(STATE *Equals, STATE *First, STATE *Second);
void SubtractRot(STATE *Equals, STATE *First, STATE *Second);
void CalculateState(unsigned char *raw-vals, float *cal-state);
void DisplayState(float *cal-state);
signed char SumItAll(STATE *Doub, STATE *ServoDoub, STATE *Int, STATE *Servolnt,

STATE *Prop, STATE *ServoProp);
signed char SumltAllPrint(STATE *Doub, STATE *ServoDoub, STATE *Int,

STATE *Servolnt, STATE *Prop, STATE *ServoProp);
void SaveDesiredCalPotData(void);
void DynamicControl(void);
void PDServoVals(void);

/ee*e**e***eeeeeeeeeeeeeee**e**** * TX ********eeee***e********espeeeeee/

/* --------------------- Serial Port Addresses --------------------------- *
/* 8250 UART base port Address: COM1=0x3f8 , COM2--Ox2f8
1. .1----------------------------------------------------------------------
int SerialPort=l; /* COMI or COM2 */

#define BASE (0x3f8-((SerialPort-) <<8))
#define TXDATA BASE /* transmit data */
#define RXDATA BASE /* receive data */
#define DIVLSB BASE /* baud rate divisor lsb */
#define DIVMSB (BASE+1) /* baud rate divisor msb */
#define INTENABLE (BASE+1) /* interrupt enable e/
#define INTIDENT (BASE+2) /* interrupt ident'n ./
#define LINECTL (BASE+3) /* line control */
#define MODEMCTL (BASE+4) /* modem control e/
#define LINESTATUS (BASE+5) /* line status */
#define MODENSTATUS (BASE+6) /s modem statuse/

/* --------------- serial interrupt values -------------------------------

*define IRQ (4-(SezialPort-1)) /* 0-7 =IRQO - IRQ7 */
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#define SERIALINT (12 -(SerialPort-1)) /* interrupt vector e/
#define SERIkLIR•L (-(I << IRQ))
*define PICO0 0x21 /* 8259 programmable interrupt controller */
*define PICOO Ox20 /* it I/

*defin. EOI Ox20 /* End of interrupt command */

/*- Modem control register --------------------------------
*define DTR 1
*define RTS 2
#define OUT2 8

int PARITY =0; /* parity none
int STOPBITS -1; /* I stopbit or 2 */
int WORDLEN =8; /* length of the data or 7 */
int BAUD =19200;

/*- serial port initialization parameter byte -------------------

static union {
struct{

unsigned vordlen : 2;
unsigned stopbits : 1;
unsigned parity : 3;
unsigned brk : 1;
unsigned divlatch : 1;

} serial-initial-bits;
char serial-initial-char;

} initserial;

/* Local mask to enable,disable TX interrupts C/

*define EnablePCTXint() outportb(INTENkBLE,setbit(inport(INTENABLE) ,1))

#define DisablePCTXint() outportb(INTENABLE,clearbit(inportb(INTENkBLE) ,1))

#define ONEBIOSSECOND 20
#define ONEQUARTERBIOSSECOND 5
#define FIFTYBIOSMILLISECONDS 1
long int TXtime; /* time values are TXed */

static void (interrupt far *oldserialint)(void);
static void interrupt far nevserialint(void);
void InitSerialPort (void);
void initializelSR(void);
int readserial(void);
int writeserial(void);
void clear-serial.queue(void);
void RestoreOldISR(void);
void TXit(void);

*/**************e**********e**ee**e**** RI *******.********ee*e******i*******

#define EnablePCRXint() outportb(INTENABLE,setbit(inportb(INTENkBLE),0))
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#def ine Disa~blePC...UintoC outportb(IUTENABLE~clearbit (inportb(IITENABLE), 0))
*def ine Rlint-Enabled getbit (inportb(INTENABLE) .0)

int Ristream; /* Somaahore to indicate Stream being Rled *
int Richar; 1* Semaphore to indicate Char lied */

unsigned char WorkLinestat; /* reception linestatus *
unsigned char Ricomplete; /* sephamore aot when the stream is correct *
unsigned char NewData; /* sephamore sot when new values are lied .

void Initfliparm(void);
void ClearWorkVar(void);
unsigned char Checksum(int maxnu-, unsigned char CheckArray 0);
void CharRX(void);
void PC..RX-.ISR(void);

/*ee**eeeee*eee****eeee~** ISC ***eeee**eseseeee/
*define SOUNDDELAY 4
FILE *fopenO;
int fcloseo(;
void WaitForEnter(void);
int pover~int a, mnt b);
long ConcatLong(unsigned char Byte0, unsigned char Bytel, unsigned char Byte2,

unsigned char Byte3);
double ConcatLongD(unsigned char ByteO, unsigned char Bytel, unsigned char Byte2,

unsigned char Byte3);

/* Communication Prototypes *

void LoadGenericCal(void);

/* Basic prototypes */

void setup..comm~void);
void setup-.arrays (void);

/* Joystick defines and prototypes e

*define GAMEPORT 0x203
typedef struct {unsigned mnt lx, ly, rx, ry;} stickstate;
void readstick(stickstate *);
void readstick-.array(unsigned int*)
void cal..joystick(void);
#define JOY..CAL-.FILE "joycal .0"1

float conv-.factor[SJ;
unsigned int jmin[5J, jmAxr[SJ; /* Joystick calibration *

/* miscellaneous changes */
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unsigned char OldAckBu~ff POT-ACK-.STRING-.LENGTHJ; /* stores one history e

void SetServoFromStick(void);
void ControlLoop(char ControlSwitch);
void ProcessStateData(char DataSwitch, unsigned char *Servos,
unsigned char *UncalState);
void DoControlAndDataLoop(char ControlSwitch, char DataSwitch,
char WriteControlWithNovState, char *Init~essag.);

unsigned PreviousControlTime; /e Keeps track of when last control
cad was sent */

void DisplayPotData(unsigned char *raw..pot);

int delaytime = 0; /* time to delay between TI e

*def in. NUM-SENSORS 7

*define PITCH 0
*define ROLL 1
#define ALTITUDE 2
*define Y-.COORD 3
*define YAW 4
*define X-.COORD 5
*define YAW-DOT 6

float state ENU!'LSENSORS];

typedef struct state,.rec{
float TimelnSeconds;
unsigned char ServoVals ENUI'SERVOSJ;
float CalStat.e[NUM..SENSORSJ;
struct state-.rec *NextStateRec;
I
StateRec;

StateRec *FirstStateRec = OL;
StateRec *LastStateRec = OL;

StateRec *GimmeRec~void);
char StoreState~unsigned char *ServoVals, float *CalState);
void WriteState(char "TheFile);
void ClearStateRecs(void);

/***** TIMING STUFF .******/

*define SECOND-TIME-COUNT 1193000L

#define THIRTY-MINUTES-.TIME ((unsigned long) (SECOND-.TIHL-COUNT" 1800))
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#define MILLISECOND..TINL-COUNT 1 193L
Idef in. LOOP-.DELAY ((unsigned long) (20L * ILLISECOND-.TINE-.COUIT))
unsigned long longtiner(void);
unsigned DelayUntil(unsigned long TargetTime);
void InitDelayTimer(vaid);
unsigned long Timefinc.LastDelay(void);
float NS-.SinceLastDolay(void);
extern unsigned long LastDelayTime, FirstDelayTia.;

*def ine clearbit(reg.NumBit) ( (unsigned char)(rog) & (OzFE<<(Iufli0))
*def ine setbit(reg,NuzmBit) ( (unsigned chaz)(reg) I(Ox0I<<(Iumit)) )
*def ine gotbit(ro.gNumBit) ( (unsigned char)(reg) &(Ox0l(C(NuuBit)) )

unsigned int min-.b-.array (5J, max..b-.array (5J;
/* array to stare servo max/rain */
void putByte(unsigned char putlt); /* flea byte to PC: Byte fled is found in

putlt *
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Appendix B. MATLAB .m Files

Listed below are the various MATLAB® .m files used in prototyping the emulator and con-

troller neural networks.

function [Wo,Wi,e] a bkprp(x,d,Wo.Wi,eta)

*~******e*********b*********ee*********e****e*e*e*******e****e**e**e*****e*****

%. function [Wo,Wie] - bkprp(xd,Wo,Wi,sta)

% x -input data vector
% d -desired output vector
% eta - step size
% Wo - output weights
% Wi - input weights

% Backpropagation routine through a NN with a linear input layer, sigmoid
% transfer function at the hidden layer, and a linear outpur layer.
Zee*e*******e***************************e************************************

[p, nil = size(Wo); % p - 8 of output nodes
[n,m] - size(Wi); % n - * of hidden nodes

% m - # of input nodes

%*************************Forward propagation*******************************

u = Wi*[x ; 1); %input vector to hidden layer

a = (ones(n,1)+exp(-u)).^(-1); %output vector of hidden layer

z = Wo*[a ; 1]; YVNN output vector

Xe*ee**eeeee*eeee*eee*ee*ee***********eeeeee*eeeeeeeeee*eeeeeeeeee****eeee***

%e**ee****************************kpropagati**eee****************************

a = d-z; %error at output

deltaEWo = -e*[a ; 11'; %Equivalent error at hidden layer output

Wo - Wo - eta*deltaEWo; %Output weight correction

deltaEWi =-([diag(a.*(ones(n,1)-a)), zeros(n,1)J)*Wo'*e*ex;1]';
%Error at input

Wi = Wi - eta*deltaEWi; UInput weight correction

%oee* eee*e*eeeoeeeeeeeeeeeoeeeooeeeeeeeeeeeeeeeeeeeeeeeeee*e*80**e******
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% tratail .u

% Iterative routine to train tail rotor emulator. Calls MATLAB function
% bkprp.m. Data structure: throttle,rudder,state(k), state(k-1). stat*(k-2)

clear;
load fame; % Exemplar file
famenorm =(fame./255); % Normalize data

Unorm = famenorm(1:300,1:5)';

Em,j] = size(Unorm); % size of the input vector u - mxj

n = 15; % # of hidden nodes

D=famenorm(1:300,6)'; % desired output

[p,j]=size(D);

eta=.OO1; % step size

Wo = rand(p,n+1) -. 5; %creates the input and output weights randomly
Wi = rand(n,m+l) -. 5;

1=1;

while 1 < 1000I %loops through number of epochs

for k = l:j %loops through all input vectors

u Unorm(:,k);

d D(:,k);

CWo,Wi,e] = bkprp(u,d,WoWi,eta);

E(:,k) = e;

end

error=sum(.5*(E.72)');

mserr(l)=error;

1=1+1;

end

save trutail Wo Wi mserr; % save weight and error in file "trntail.mat"
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Scheck.m

% Forward propagation through NN. Output is compared with desired and
% plotted.

load famoneu;
famenorm= amenew./255;

% x -input data vector
% d -desired output vector
% eta - step size
%Wo - output weights
% Wi - input weights

x = famenorm(:,l:5)';

d = famenorm(:,6:8)';

[mj]=size(x);

[p, nil = size(Wo);

En,m] = size(Wi);

% p - * of output nodes
Sn - # of hidden nodes
Sm - # of input nodes

%*************************Forard propagation****************************-,**

u = Wi*[x ; ones(ij)]; %input vector to hidden layer

a = (ones(n,j)+exp(-u)).-(-1); %output vector of hidden layer

z = Wo*[a ; ones(ij)]; %NN output vector

plot (i :j , [z;dl)

err = .5*sum((z-d).'2)

82



Appendiz C. Derivation of Backpropagation

C. I Emulator

The objective in backpropagation is to minimize error with respect to the neural network

weights using a gradient decent technique. In this section, we will first consider backpropagation

through the emulator NN with one hidden layer using a sigmoid transfer function

1(x) = (1 + e-')-'

and linear input and output layers (Figure 21), which will be referred to as a linear-sigmoid-linear

NN.

0

Emulator

Figure 21. Linear-Sigmoid-Linear NN

This network consists of an input layer with (m x 1) column vector x, which is a combination of the

control vector u and the state vector s, and the input bias term Oi. The output of the hidden layer
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vector a (n x 1), which along with the output bias term 0. are combined to produce the output

vector z (p x 1), or the next state of the plant.

In order to simplify the analysis, the input and hidden layer vectors will be combined with

the respective bias terms to produce a single vector. Thus the revised input vector is the input

vector x appended with the input bias term 8i ([xTIjIT) denoted by i. Similarly, the output of

the hidden layer a is appended with the output bias term 0. to produce the revised hidden layer

vector A = [aT Oo]T. The associated weight matrices are the input weight matrix Wi [n x (m+l)]

and the output weight matrix Wo [p x (n+l)].

The derivation of the backpropagation algorithm presented here is a variation of the vanilla

backpropagation paradigm used by Rogers and others (16). The analysis is focused on a vec-

tor/matrix representation of backpropagation. The output of the network can be represented by

the equation:

z Woa (11)

where a = (12)

and a = fh(Wii) (13)

and i = r (14)

The bias term 0 in both the input and output layers is normally set to unity. For the remainder

of this derivation, we will consider both 8. and 0o to have a value of 1.

The nonlinear vector-valued function fh(') in this design shall be referred to as the vector

sigmoid function and defined for some arbitrary (n x 1) vector a by:
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=h(_) [fh(ai), fh(aO), .. , fh(n,,)] T  (15)

= [(+eal)-1, (1+ea),2 ... , (l+et-)-•"T (16)

(17)

The general weight update equation is defined as:

OE
W+ = w -71W- (18)

where E = 2lid - 2lt• (19)

where the desired output of the NN is represented by the vector d and the output of the net is

represented by z.

C.1.1 Output Layer. Consider the problem of minimizing the error function 1lid - Z112

with respect to the input output weight matrix W,. Begin by taking the partial derivative of the

error function with respect to the output weight matrix W0 .

OE 10W lid- Z112 (20)
Wow ~ -I- 2 II

- 1 a (d- =z)T(d- z) (21)
10W

- 1w (dTd_ 2ZTd+ zTZ) (22)
2 0Wo

_ 1 9 (dTd - 2iTW.Td + &TWTWoa) (23)27- 0W

W 0 (TWTWah
1 [a-•o(dTd) + 0. (-2a W~d) + •- 0  Woa)] (24)
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Since d is not a function of W,, then O(dTd) = 0. Thus, there are only two remaining

terms to consider. In order to more easily analyze the partial derivatives, it might be helpful to

restructure the matrix into a row vector with column vectors as elements.

(a) ca) (25)+1,osie

Examining a single column vector gradient a (a), where k E 1, n, n + 1 consider

the last term in equation 24:

-(&Tw Wi)= [(Woa)TWjk] (26)

Applying the product rule for a vector gradient (17:274), where a and b are vector-valued

functions of the vector 0:

a&•_ (_) b(_)= aT(_) b(_) + a• _T(j) &M (27)

If a(_) = b(_), then the equation becomes:

_'T(0) a(_) = 2 (OaT(_)) a(_) (28)

We can then express equation 26 as:

a &W0, (0 ")
0 ( = 2 ( o(W 0 )T)Wjk (29)

0Woh
= + + + + ), W (30)
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Then taking the gradient, we find only al remains, and thus equation 26 becomes:

a (iTwjW.&) 2akWA I<k<n
O 2Wo k = n + 1(31)

And then reconstructing the matrix:

-a (-TW.Woa) = [2alWoi 2a 2Woi... 2anWo&] (32)

= 2WoiiT (33)

Examining the second term of the equation 24:

a (&2i T Wod) = [O(--2fi2Wrd) O(-2ikTWod) O(-2ikWT d)] (34)
5Wo. (- WaT) =~o I &o. d) (4

Again, examining a single vector gradient for the kth vector:

a (_2iTWord) . an 1][Wo WI... woT wo,+, ]Td (35)

= 0 [a1WoT0 + a2woT +.. + anWoT + w.T+]d (36)

= aAd 1<k<n (7

k=n+l

Placing the vectors back into matrix form:
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W (-2=Word) -2[aid a 2d... ad d] (38)

= -2dir (39)

Combining the two portions of the original equation 24:

WO -= 2 [ (-2iTW d) + • o(a TW.TW a)] (40)

= -diT + Wa&aT (41)

= -(d - W0 &)ikT (42)

= -(d- z)iT (43)

C.1.2 Input Layer. Now to address correction of the input network weights, Wi. We

begin as before by taking the gradient of the error function E = 1Id - zlf• with respect to Wi. In

the same way as the output weight derivative, we arrive at the following:

jW-• =O ,lid _ Z112 (44)

0 (d Td)+ 0 (-2iTWd) + _---(iTWTW.i)] (45)

And as before, we examine the kth column of the gradient:

=w [O ( &wi, L mwi,,I+(
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Using definition mATQm -= 2(ImT)Qm (17:274), the last term in equation 45 becomes

O(iTWTWi) = 2 (O--&T) w rWoh(w,i) (47)

Owi - -e .wfik

Turning attention to the second term in equation 45 in a similar vector gradient analysis:

a- (--2TW.Td) = -2-a (iTWoTd) (48)

O(so)= -2(a iT) Wjd (49)

@ ~T, (50)

Notice both terms of equation 45 have the common factor 2( - ikT)Wo. Recombining the two

terms and factoring:

w, = -2 ( i w.T (d - Woi) (51)
O'w0J

= -2 O(-i T) WoT(d - W.o) (52)

= -2( )WT(d - z) (53)

Focusing attention on the gradient calculation (4,i&T) we now analyze the gradient of the vector

sigmoid function. For simplicity, let a = Wix.

A - 2 [f•(Wj*)jl] (54)
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[fh (a) 111 (55)

- M-Lhal), fh(a2),... ,fh(an)IlI (56)

A 11(alb, Ah012),...- -,fA (anlI~ () (57)

- 1 5 Vh(a1)i fh(a2),... ,fh(an)IIO (58)

ow 0

Examniing each element,

O f h ( a f) + - 'a)( 0

= ( ~(+ ee&c)- 2 ea'(-) L (61)

= 1+ e-*'Y-e"'(1 + e*cr)' Oa (62)

at (1- at)±- (64)

we find that

a, (I a,) 0 2( Oa2iowj "'n1 0

0 a, a(1 -a,) 1*a 2 (1 -a2) 02 *...an(1 -an) 0a
-a C=1&~ (65)
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However, j = 0 when 1 0 k. This can be seen when considering the the vector 2:

S= wj (66)

= [wi,zI +wi,Xz2 +.-+wi.z,T +wi.+,] (67)

The Ith element of this vector is:

C1= Wll•XI, + Wi, 2 Z2 +. + W.,.M + Wi=(+,) (68)

When taking the derivative with respect to wi,,, the only term in the sum that remains is the kth

term when I = j. Thus:

laf = I =j (69)

atvjh t 0 1:0 j

The matrix in equation 65 then reduces to a diagonal matrix

a,(1 - as)xt 0 ... 0 0

= 0 a2(1-a2)zXk .. 0 0ai (70)Ow,: : ."

0 0 ... a.(l - a,)zrk 0

(71)

= [diag[al(1 - ai)zk, a2(1- a)zk, , ., (1 - a.l)z;] (72)

= [diag (a 0 (1, - a)) I Q)] z (73)
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7..W0,,,

where 0 represent the Hadamard or array product (10.45). Inserting this result into equation 53:

OE -2 Wj(d- z) (74)

S-diag (a 0 (1. - a)) I jQ)zkWo(d - z) (75)

- -diag (a 0 (1_ - a)) I 0.)WI(d - z)z, (76)

Combining all the vectors into the original matrix in equation 45:

T

-(diag[a 0 (1. - a)] I g)WT'(d - z)xl

-(diag~a 0 (1. - a)] I -Q.)W.T(d - Z)X2
OEDE (77)

-(diag[a 0 (1. - a)] I O-,)WI(d - Z)zm•

-(diag[a 0 (1. - a)] I -L)Wo'(d - z)

(78)

= -[dag (a 0 (1. - a)) I1] WOT(d - z)[z- X2 ... XZm1] (79)

- - [diag (a 0 (1 - a)) jQ•j W.(d - Z)i T  (80)

C. 1.3 Summary. The equation for forward propagation through the linear-sigmoid-linear

neural network is:

z= Wo (81)

wherei = [a] (82)

and a = fh(Wix) (83)

andi- [t ] (84)
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And the backpropagation weight update equations are:

W+ = W. - 17-O- (85)

where OE = -(d - z)iT (86)
ME

w+ = W- -,17aw- (87)

where OE- [diag(a 0 (ln -a))IJW
T  - (88)ow;

C.2 Controller

The controller network in this design is also a linear-sigmoid-linear neural network. The

output of this network is the control vector u. This is combined with the state vector s to produce

the input for the emulator (Figure 22).

Controller

Figure 22. Emulator and Controller
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C.S.1 Equivalent Error. The backpropagation derivation for the controller network is

identical to the emulator, with the exception of the origin of the error. In the case of the emulator,

there is a specific desired response to be compared to the output of the net. In the controller,

however, there is no direct measure of error. In this instance, the concept of equivalent error is used.

Examining a slightly different representation of the weight update equation used by Nguyen (13):

W+ = W- + 2#._vT (89)

where 6 is the equivalent error vector defined by

S= (d - z)f.(Woa) (90)

b_ = fh(Woa)WT, (91)

for the output and hidden layers respectively and v is the output of the previous layer. Thus we

can alternatively represent the weight update equations derived in section C.1 as:

W.+ = Wo.- +6iT (92)

Wt = W-+ nb_•kT (93)

Again, 6, and 6h represent the equivalent errors at the output and hidden nodes respectively This

is identical to the derivation in section 1. Note that the equivalent error at the output layer of the

emulator is:
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= (d- s) (94)

since f'(Woa) = 1 (95)

and the equivalent error at the hidden layer is:

6.= fhl(WX)WT6 _O (96)

= (diag(a 0 (1. - a)IO.)W T(d - z) (97)

where f1'(Wix) = jdiag(a 0 (1. - a))10_.] (98)

C.2.2 Controller Weights. In order to update the controller weights, the final state error

at the emulator output is backpropagated through the emulator net without updating the emulator

weights. At the output to each layer, there is an equivalent error which is used by the preceding

layer as the error.

In the output layer of the emulator net, the equivalent error is simply the actual error. The

hidden lay prior to this, the error is distributed over each output of the hidden layer. Since the

input to the emulator NN, x, consists of both the state vector s and the control vector u, the

equivalent error will also consists of two components, 6 and 6. Thus, the equivalent error at the

output of the controller net would be the equivalent error for the control vector u at the input to

the emulator net.

. =6 •(99)

= f.(Woc) {W%_6h}L (100)
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The subscript u in Equation 100 indicates those elements of the vector corresponding to the

control vector u. Applying the same approach used in the emulator NN, the equivalent error at

the hidden layer of the controller NN is:

b_• = f'(Ws)WTo. (101)

= (diag(aL 0 (1_ - a8)QO.)WZ6-. (102)

C.2.3 Summary. The controller network update equations are:

w+. = W-. - •o (03

,6 = {wb .}U (104)

6h. = (diag(a4 o (1. - a)lIQ,)W;-'_. (105)

6. = (d - z) (106)

WS = W- - k°i (107)

b-n = (diag(a ,0 (1_ - a.)I0n)W o _o (108)

C.3 Back Propagation Through Time

In the case of BPTT, this process of equivalent error can continue throughout the previous

time steps with a slight modification. Recall in obtaining Equation 100 there also is a component

of the equivalent error corresponding to the state input vector z. This is the same vector that is

simultaneously input to the controller NN.

The emulator output of the previous state is input to both the emulator and control NNs

of the next state. Each output node of the emulator is connected to an input node of both the
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Figure 23. Training the Controller (C = Controller, E = Emulator) (13:20)

emulator and controller of the next state. If we examine the backpropagation equations as applied

to a single node, we find the equivalent error is the sum of the equivalent errors

=j(k-1) = f'(X)W7"--(k) (109)
n

= f'(z) Z wj61(k) (110)
i=1

Since there are no weights or nonlinearities between states, this reduces to:

=j(A:-1) = 6(k) (111)
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Thus, the error vector at the output of the emulator in the (k - 1)th state (_.(h_,,) is the sum of

the equivalent errors for the position vector (s) at the input of the emulator and controller

(,(h,)) in the kth state.

=6 +6.(120.(6_,) = ,.(,+ 4.k) (1•

Then it simply becomes a matter of backpropagating this error through the (k - 1)th state and

continuing the process until reaching the first state.
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Appendix D. FAME

This appendix includes documentation on the various hardware and software modifications

made in the course of this research, changes to the Report on the Fast Adaptive Maneuvering

Experiment (FAME) (Section D.3.1), and the user's guide for the AFIT FAME apparatus (Sec-

tion D.4). Prior to attempting any experimentation using FAME, it is highly recommended the

experimenter read the entire contents of the original report and as well as all updates. Current soft-

ware code as well as various documents are available through anonymous FTP to "fame.gmu.edu"

under the directory "pub". Section D.2 includes a reprint of the various FAME documents available

through FTP. The primary point of contact at George Mason University is Darrell Duane, E-Mail

dduaneOmasonl.gmu.edu.

D.1 Summary of Updates

D. 1.1 Software. The FAME apparatus was delivered with the software FAMEPC, version

3.0. Since then, versions 4.0 through 6.0 have been made available. Also available is a C++

Windows version of the software called TEMPOL. A version of TEMPOL for MS-DOS is also in

production. In this research, FAMEPC, version 6.0 was used with some minor modifications. A

listing of this software can be found in Appendix A

Minor changes to version 6.0 of the software included changing the directory paths of the

header files "pcdef.h" and "famedef.h". A small section of code was changed to select of COM 1

instead of COM 2 as the communications port interface to the MCU. Finally, the menu display was

changed to reflect the correct software version and to correct a spelling error.

A change was also made in the timing function "DelayUntil0" in "ControlLoopo.". This

function caused intermittent program lockup while attempting manually control the FAME heli-

copter. This function was replaced with the C-standard function "delay(10)", which produced a

time delay of 10 milliseconds. Unfortunately, this causes inaccurate timing data to be recorded

99



in "filel.trn." However, the data points are still recorded at even intervals of approximately 25

milliseconds.

It is not mentioned in any of the FAME documentation, but it is also necessary to include a

file called "generic.cal" in the same directory as FAMEPC.EXE. The program will run without it,

but it will not report the state variables.

D.1.2 Hardware. A number of changes to the FAME hardware were made in the course

of this research. Some were at the direction of the FAME developers at GMU while others were

created out of necessity specific to this research.

D.1.3 Directed Changes. Changes directed by the FAME developers are fully documented

in Section D.2.

D.1.3.1 Local Changes. An additional hardware modification was necessary to

correct a defect in the apparatus. The aileron servo was not operational du, to an open circuit in

one of the leads. Since it turned out this lead was common to all the servos, the correction was

to install a jumper from an adjacent connector. The jumper is between connectors 1 and 2 on the

servo block.

Quick connects were also installed to allow easy removal of the helicopter from the test stand.

The connectors are standard for Radio Controlled use and can be easily connected to a standard

helicopter radio receiver.

The Kalt Whisper helicopter is secured to the stand using plastic tie wraps. Again, this

permits easy removal of the helicopter by simply cutting the ties wraps. These tie wraps are

inexpensive an easily replaced.

It was also necessary to modify the stand to stabilize the helicopter during take off and

landing. As delivered, the helicopter remained suspended from the training platform during the
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take-off run-up. The engine torque would cause the helicopter to yaw wildly until the tail rotor

developed enough speed to generate yaw control. Similar problems resulted on landing. The

modification raises the red direction of flight (DOF) collar to support the landing skids when the

apparatus is resting on the floor. As the helicopter begins to rise, the platform lowers, allowing

freedom of movement about all axes. Drawings of this modification can be found in Section D.3.1.

D.2 Fast Adaptive Maneuvering Ezperiment File Repository

The following section is a reprint of the various FAME documents available by anonymous

FTP to fame.gmu.edu. Footnoted comments are provided to document the changes in the AFIT

FAME apparatus and to help further clarify the updates.

D.2.1 GYROMOD. W51: Hardware Modification to facilitate pulse width measurement from

Gyro. In order to enable the software to measure the length of the pulse width from the Gyro

which provides an indication of the rate of rotation of the helicopter (Yaw Dot), a wire must be

replaced on the servo connector block. The quick ties which secure the bulk of the ribbon cable

to the aluminum extension should be clipped. The ribbon cable follows the resistor color code for

the units digit of the pin number, thus pin #28 is a gray wire. It is this wire which should be

unsoldered from servo block position #0, and the remaining uninsulated wire should be clipped.

The new wire that is to be connected at the servo block position #0 is pin #32, a red wire,

and can be found by looking 4 wires above the unsoldered gray wire. It is not necessary to place

the new wire into the sheath where the remaining servo block wires are protected. However, a piece

of heat shrink tubing is provided to insulate at the solder joint. Also, quick ties are provided to

secure the ribbon cable to the aluminum extension. This completes the hardware modification to

gather data from the Gyro. 1

1These changes are already installed on the AFIT FAME apparatus.
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D.2.2 README: Fast Adaptive Maneuvering Ezperiment File Repository. The files

for all previous version of the FAME project are available individually or as a set in various files

fame5.0.tar.Z in the directory ver5.0.

To access these files, FTP them in the binary mode (type binary at the FTP prompt), use

the uncompress command to expand the file, (type uncompress fame5_0.tar.Z), untar the files (tar

xfv fame5_0.tar), and the files will be available on your unix machine. 2

Also, the FAME report is available in postscript format in the report directory.

D.2.3 WJREAD. TXT. File name: WJREAD.TXT

Created: 3/5/92

Updated: 3/26/92

This text file gives instructions on how to upload WRITEJMP.0 to the Motorola MC68HC11EVB.

It is assumed that the user is familiar with Kermit and/or PROCOMM or some other terminal

emulation program.

WRITEJMP.0 programs the first three memory locations in EEPROM to jump to the start

of FAMEMAIN. This jump will occur if jumper J4 on the EVB is connected between pins 2-3. If

J4 is connected between pins 1-2, then the Buffalo monitor will start when the restart button is

pushed.

If WRITEJMP.0 has been run on the EVB, then jumper J4 on the board must be moved

to the 1-2 position so that the Buffalo monitor will run, and then switched back to 2-3 after

FAMEMAIN.0 is uploaded.

Assuming Kermit:

1. Connect the PC without a null modem to the bottom DB-25 connector on the EVB. 9600

Baud, No parity, 1 Stop bit.

2The same procedure applies to any of the tarred files available from the FAME repository.
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2. Start Kermit. Connect. If no Buffalo prompt (>), push reset button on EVB (located below

tne 4 screw contact power connector).

3. At the ">" prompt, type load t followed by a carriage return.

4. Escape back to Kermit by pressing the keys control-] simultaneously followed by the single

letter c

5. At the kermit prompt, type tranmit WRITEJMP.0 \0. The \0 is important as it disables

some handshaking.

6. It takes several minutes to download.

7. When the Kermit prompt appears, type c to connect to the EVB again.

8. Type the keys control-A simultaneously followed by a carriage return. The ">" prompt

should reappear.

9. One must now either type g cON0 to cause the WRITEJMP program to run. It only takes a

few seconds.

10. If there is no prompt after running WRITEJMP, push the restart button and determine

whether the automatic startup is enabled by typing, at the Buffalo prompt, >, md b600

followed by a carriage return. Buffalo should respond with several lines containing the contents

of the memory starting at location OxB600. The first line should contain TE IS 00. This can

only be programmed by running the writejmp.0 program since it is in EEPROM.

The procedure in PROCOMM is similar except the file is uploaded using the page-up key,

ASCII transfer (menu number 7), and then typing the filename. When finished, the Buffalo prompt

will appear and there is no need to type control-A. On some machines, PROCOMM is terribly slow

in uploading and Kermit is much faster.3

3 A reminder that all communication occurs at 19200 baud using the lower DB-25 connector. At this speed, the
procedure using PROCOMM and ASCII transfer proved to be quite effective, especially when using a 386-based
machine. TMansfers normally took about 30-60 seconds.

103



D.2.4 FIREAD. TXT. George Mason University, Department of Electrical and Com-

puter Engineering, 4400 University Drive, Fairfax, VA 22030

File name: FMREAD.TXT

Created: 3/5/92

Updated: 3/26/92

This text file gives instructions on how to upload FAMEMAIN.0 to the Motorola MC68HC1IEVB.

It is assumed that the user is familiar with Kermit and/or PROCOMM or some other terminal

emulation program.

If WRITEJMP.0 has been run on the EVB, then jumper J4 on the board must be moved

to the 1-2 position so that the Buffalo monitor will run, and then switched back to 2-3 after

FAMEMAIN.0 is uploaded.

Assuming Kermit:

1. Connect the PC without a null modem to the bottom DB-25 connector on the EVB. 9600

Baud, No parity, 1 Stop bit.

2. Start Kermit. Connect. If no Buffalo prompt (>), push reset button on EVB (located below

the 4 screw contact power connector).

3. At the ">" prompt, type load t followed by a carriage return.

4. Escape back to Kermit by pressing the keys control-] simultaneously followed by the single

letter,

5. At the kermit promot, type transmit FAMEXIN.0 \0. The \0 is important as it disables

some handshaking.

6. It takes several minutes to download the approximately 550 hines of Motorola S-record exe-

cutable file.

7. When the Kermit prompt appears, type c to connect to the EVB again.
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8. Type the keys control-A simultaneously followed by a carriage return. The ">" prompt

should reappear.

9. One can now either type g cOOO or replace jumper J4 and push the restart button on the

EVB. Either action will start the famemain program which has a starting address of 0x1800.

To determine whether the automatic startup is enabled on your EVB, type, at the Buffalo

prompt, >, ad b600 followed by a carriage return

Buffalo should respond with several lines containing the contents of the memory starting at

location OxB600. The first line should contain 7E 18 00.

This can only be programmed by running the writejmp.0 program since it is in EEPROM. If

automatic startup is not enabled on your EVB, read the file wjread.doc for information on running

the program writejmp.0 on your EVB.

The procedure in PROCOMM is similar except the file is uploaded using the page-up key,

ASCII transfer (menu number 7), and then typing the filename. When finished, the Buffalo prompt

will appear and there is no need to type control-A. On some machines, PROCOMM is terribly slow

in uploading and Kermit is much faster.

Remember that FAMEMAIN opirates through the upper DB-25 connector at 9600 baud, no

parity, 1 stop bit, using a null modem and expects to talk to FAMEPC.EXE.4

D.2.5 FAME Softtoare Release 6.0, Novembe' 20, 1992.

D.2.5.1 Modifications6. FAMEPC no longer controls the helicopter via the PC's

keyboard, but rather via the game port using Joysticks provided by the Skylark R/C Helicopter

Flight Simulator software package. FAMEPC also can be triggered to collect input/output data

4 Again note, after the baud rate modification, FAMEMAIN now operates at 19200 baud, no parity, I stop bit,
without a null modem through the lower DB-25 connector.

6This modification has been installed on the AFIT FAME apparatus.
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for flight of the helicopter. It is expected to return the keyboard control of the helicopter with the

next version of software.

Communications now occurs at 19.2 kBaud over the ACIA port, rather than the SCI port.

This allows for measurement of the helicopter position and control based upon this position at a

fixed rate of 50 Hz. This upgrade requires a few minor hardware modifications.

1. Communications to the EVB from the PC now takes place only using the bottom port(when

looking at the board upside down, with the helicopter up side up), without a null-modem.

After downloading FAMEMAIN.0 to the EVB using kermit or some other terminal program,

shutting off power to the EVB, moving J4 back to its original position, the serial cable will

remain attached to the bottom DB-25 of the EVB.

2. In order to communicate at 19.2 kBaud over the ACIA, a jumper must be made on the

board. This jumper must go from pin 9 of U13 to any one of the pins on the left row of

pins on J5. Also, the blue jumper must be removed from this row of pins. Note that after

this modification is made, all communications (including the downloading of new software)

between the PC and the EVB over the ACIA must be performed at 19.2 kBaud.

Full control of the servos is now available with each control string. Incremental control is no

longer being used as it was in Version 5.

There is no longer a protocol analyzer available for this format of communication.

D.2.6 Release 5.0, August 25, 1992.'

D.2.6.1 Modifications. It appears that all jittering problems have been alleviated.

The interrupt for measuring the response from the Gyro seems to have caused jittering in the

previous versions when it would be synchronized with one of the pulse widths sent to control a

'The following documentation on releases 2.1 through 5.0, while not current is still useful since many of the
features are incorporated into version 6.0.
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servo. The pulse widths are now generated in such a way that the response from the servo (which

triggers the input capture) does not interfere with the output compares.

Jitters caused by the receive interrupt have also been alleviated. The receive interrupt has

been disabled, and transmissions from the PC are monitored directly from the foreground. This is

possible since the servo control information has been reduced to one byte. Requests to increase or

decrease each servo by one out of 250 different settings are sent using a ternary code. With five

servos, this system uses the 8 bits to code 0 through 242 (3' - 243) to control the servos. The

Elevator occupies the LSB, followed by the Aileron, Throttle, Collective, and the Rudder is in the

MSB. Hence the format shown in Table 1.

Table 1. Servo Control Format

Control Macro Code J Control Macro ICode
Decrease All ALL-DEC 0 Increase All ALL.NC 242
No Change ALL-NOCHANGE 121
Dec. Elevator ELEVATOR-DEC 120 Inc. Elevator ELEVATOR-INC 122
Dec. Aileron AILERON.DEC 118 Inc. Aileron AILERONINC 124
Dec. Throttle THROTTLE-DEC 112 Inc. Throttle THROTTLEINC 130
Dec. Collective COLLECTIVE-DEC 94 Inc. Collective COLLECTIVE-INC 148
Dec. Rudder RUDDER-DEC 40 Inc. Rudder RUDDERINC 202

Further, the numbers above 242 have been allocated to perform the following tasks shown in

Table 2.

Table 2. Data Format

SControl Macro {Code H

Stop Throttle REQDEFAULTTHROTTLE 243
Set all Servo Values to Default REQDEFAULT.SERVALS 244
Dummy Value - EVB Internal Use DUMMY 249
Send Potentiometer Values POTREQ 254
Send Servo Values/Settings SERREQ 255

The EVB now acknowledges all servo control bytes (0 - 242) with the potentiometer values.

The potentiometer values consist of 9 bytes: 6 for the 6 potentiometers, 2 for the yaw gyro and 1
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for the checksum. The Start, Command, and Stop characters are no longer included. With this

change comes a change in the sequence of error measurement. Instead of the sequence listed under

the revision notes for version 4.0, below, the sequence is shown in Table 3.

Table 3. Control Sequence

Li PC: I EVB: I PC: I PC: I PC:j PC = - [
Send Ack w/ copy Calc Calc Caic

... servo Pot old new error servo ...
values values error error dot values

vector vector vector

The new rate of this sequence is 66 Hz.

D.2.6.2 FAMEPC.

Dynamic Control. FAMEPC now Dynamically Controls with a Proportional,

Integral, Double Integral controller. While in the Dynamic Control mode and after choosing a

particular servo for which to vary the transfer coefficients, the keyboard is laid out as shown in

Table 4.

Table 4. Keyboard Layout

fiInfo: ] J (Fl) I (F2) I (F3) J (F4) ] (F5) I (F6) (F7)

Double Int Inc: ()X (2 (3)Z (4)Pitch (5)Roll (6)Yaw (7)Yaw Gyro
Dec: (W (W)Y (E)Z (R)Pitch (T)Roll (Y)Yaw (U)YawGyro

Integral Inc: (A)X (S)Y (D)Z (F)Pitch (G)Roll (H)Yaw (J)Yaw Gyro
Dec: (ZX (XY (C)Z (V)Pitch (B)Roll jNYaw MYaw Gyro

Proportional Inc: a )X sY (d)Z (f)Pitch gRoll (h)Yaw )Yaw Gyro
I Dec: (z)X (xIY (c)Z (v)Pitch (b)Roll (n)Yaw (m)Yaw Gyro

(Plotentiometer Data ([)Position Data (-)Error Vector
(8)Display PC Servo Vals (9)Display EVB Servo Vals (O)Equalize

Gyro Offset: (F8)Display (F9)Decrement (F1O)Increment
(I) quit varying values for this servo

The error vector can now be displayed real time by typing the (-)minus dash key. Also, there

are some cases where the servo values maintained by the PC become different from those of the
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EVB. (8) Displays the PC's servo values, (9) request the servo values from the EVB and displays

them, and (0) Requests values from the EVB and sets the PC's values equal to these requested

values.

When setting the Transfer Coefficients for the Yaw Control, it is often helpful to be able to

modify the Gyro Offset value, since it is this value that serves as the DC offset of the yaw from the

desired value. It has been found that the dynamic control feature is able to keep a specified yaw

setting; however, this yaw setting will always have a non-zero error as revealed using the (-) key.

This error can be set to zero by adjusting the Gyro Offset value. Thus (F8) displays the current

setting, (F9) decreases and (F10) increases the Gyro Offset value.

At George Mason University, we have achieved good control of the Pitch, Roll & Yaw axis

and are currently searching for transfer coefficients to control the elevation. The GENERIC.COE

file that is a part of this package reflects these attempts. After the elevation is stabilized, I expect

we will work on the X & Y axes.

The control routines are in the function DynamicControl(), and are taken from Discrete- Time

Control Systems by Katsuhiko Ogata, 1987, pp. 200-204. The nature of the communications link

between the PC & EVB requires that control be in the velocity form, that is, instead of directly

calculating values for the servo settings, values are calculated to increment or decrement the servo

settings.

Control of the helicopter was first attempted with a discrete PID control, but we were unable

to achieve reliable control of the pitch and roll axes. Next, we attempted control using a P-I-

II controller, and were able to achieve stability. The P-I-I1 control was formed by applying the

positional form of control to the helicopter

In PID control, the positional form(direct control) is
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de(t)
u(t) = K e(t)dt + Kpe(t) + Kd

e(t) = desired position - actual position vector

The discrete version of this is

u(t) = Ki +(e(O) e(T)) + (e(T) + e(2T)) +'"÷(e(k - 1)-+ e(k)) +

Kpe(k) + Kde(k) - e(k - 1)

For the integral term, the program keeps eiror vectors for four terms into the past. Also, the

divide by two for each pair of error vectors is not included since this would merely scale the Ki

coefficient. Because we are applying the positional form to a problem that requires a velocity

form, our control function looks like:

u(t) = K 4i[e(k - 4) + e(k - 3) + e(k - 3) + e(k - 2) + e(k - 2) + e(k - 1) + e(k - 1) + e(k)] +

Kje(k) + Kpe(k) - e(k - 1)

D.2.6.3 FAMEMAIN. All calibration of potentiometer values now takes place on the PC. The

commands to request Position values directly from the EVB have been removed, since this is a

time consuming process, and it is difficult to create the calibration coefficients on the EVB. This

software release does not contain the code for FAMECAL, which is now obsolete. Also, the code

in the file FAMEINI2.c has been copied into FAMEINIT.c since it is no longer necessary to
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distinguish between initialization functions required for both FAMEMAIN & FAMECAL, and

those that are only used in FAMEMAIN.

D.2.6.4 Protocol Analyzer. In order to view the commands being sent to the EVB real time, a

'protocol analyzer,' PROTOAN.EXE was developed. The RX & Ground lines of a second PC's

serial port are connected to the TX & Ground lines (respectively) of the PC running FAMEPC.

This program decodes the byte sent to the EVB and displays 5 columns of -1, 0, or 1 to indicate

the servo controls sent. They are in the same order as listed above: Elevator, Aileron, Throttle,

Collective, Rudder.

D.2.7 Release 4.0, July 20, 1992.

D.2.7.1 Modifications. This version release marks a significant change in the FAME software,

both structurally and in the features offered. There have been complaints and we have

experienced 'jittering' in the servos which seems to be caused by the HC 11. We hypothesized

that this was caused by interrupts for servo control being unable to be triggered because

interrupts for communication were active. Hence, we have moved the non-time critical

communications processing code from the background (from the ISRs) to the foreground (to the

main( function) where it can get interrupted.

This has solved some of the jittering problem; however, there are still instances of gyros jittering.

For instance, our Aileron jitters even when no communications is taking place. We have some

ideas as to the resolution of this problem and will announce another software release when we

resolve it.

Another modification made to reduce jittering and reduce the amount of time spent controlling

the Helicopter was the reduction in the size of the Servo Values String. Previously, this string

used two bytes for each servo value transmitted to the HC 11; this has been reduced to one byte

per servo. Hence, the Servo Value String uses 9 instead of 14 bytes.
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D.2.7.2 FAMEPC. Code has been developed for implementing a PD controller for the

Helicopter. Upon pressing the tilde (-) key while in the Keyboard Servo Values mode, FAMEPC

begins by establishing a vector describing the desired position of the helicopter. The program

measures the present position of the helicopter by sending out a potentiometer value request and

converting it in into a Cartesian position based on its Calibration Coefficients. The measurements

of X, Y, Z, & Yaw from this request become a part of the vector of desired values. Entries in this

vector for Pitch, Roll & the Yaw Gyro are set to 0, since it is desired to have the Helicopter flying

balanced and with a non-existent Yaw rotation rate.

Having established a desired position vector for the helicopter, FAMEPC continues by repetitively

sending potentiometer value requests. These potentiometer requests are also converted into a

Cartesian position & gyro vector by FAMEPC, and are then used to establish an error and rate of

error (error dot) vector. The error values are found by measuring the difference between the

desired position vector & the actual position vector. The error dot vector is calculated after every

second potentiometer request by finding the difference between the previous two error vectors.

The potentiometer request that occurs after the error dot vector is calculated, that is, the first of

the set of two potentiometer requests, also contains servo control values. These servo control

values are calculated by updating the previous servo control values with changes calculated from

a matrix that is multiplied by the error & error dot vectors. Valid values for this matrix are still

being measured by trial and error at George Mason University.

This transfer matrix can be edited in a variety of manners. From the main menu, an option is

available to directly edit it. Also from this menu, one can edit real time change values for each of

the coefficients. These change values are amount the coefficient will change when a particular key

is pressed during real time control operations. Only the coefficients which constitute inputs to one

servo can be varied at any given instant.
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While real time control is taking place, the set of error & error dot coefficients to be varied for a

particular servo are selected by typing the first letter of that servo: (E)levator, (A)ileron,

(T)hrottle, (C)ollective, or (R)udder. From this point, incrementing or decrementing a transfer

value takes place by typing the key from the Table 5.

Table 5. Control Keys

D Info: (F1) (F2) (F3) (F4) (FS) (F6) (F7)

Inc: (1)X (2)Y (3)Z (4)Pitch (5)Roll (6)Yaw (7)Yaw Gyro
Dec: (Q)X (W)Y (E)Z (R)Pitch (T)Roll (Y)Yaw (U)Yaw Gyro
Inc: (A)Xdot (S)Ydot (D)Zdot (F)PitchDot (G)RollDot (H)YawDot (J)Yaw Gyro
Dec: (Z)Xdot (X)Ydot (C)Zdot (V)PitchDot (B)RoliDot (N)YawDot (M)Yaw GyroDot

(j(I) quit varying values for this servo I (O)display servo value settings

The Esc key works as usual to stop the throttle & break the real time control mode. Pressing a

function key for information provides data about the value of the matrix coefficients & the change

rates for the particular degree of freedom.

The transfer matrix of control coefficients and the ratws at which they should be varied :an be

saved to and loaded from a DOS file. Every time FAMEPC is executed from DOS, the file

generic.coe is loaded into memory for the transfer matrix & varying values, and upon quitting

FAMEPC, the current values are saved to this file. Analogous operations occur with the file

generic.cal for the calibration coefficients.

D.2.8 Release 3.0, June 23, 1992.

D.2.8.1 Modifications.

F4MEPC.

Repetitively Vary Servo Control Values. The keyboard layout for varying servo control values

has been changed to a format similar to that of a radio control unit. The Escape key now sets the

throttle to its lowest level, acting as an emergency stop key. When the throttle is at its lowest
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level, striking the equals sign or plus sign key will set the servo control values to their defaults.

Further, visual indications of the servo values have been removed and a tone is sounded after each

keystroke. When the limit has been reached, an extremely low or high tone is sounded instead.

In the previous version, servo control values were repetitively sent to the EVB as a part of the

loop that checked for keystrokes, that is, they were sent irregardless of whether a change was

requested at the PC's keyboard. Now, the servo control string is sent to the EVB only after a

keystroke to change the servo values occurs.

Measure Step Response. The measure step response option sends the specified step impulse to

the EVB and saves data to the specified file every time the I key is struck. The Q key should be

struck to exit the measure step response option. The time measurements are recorded in

milliseconds, and are based upon the time that the step occurs, such that the five preceding

samples have negative time values.

Calibration. Calibration values now can be downloaded from the EVB, measured with the PC,

saved to the PC's disk, and be loaded from disk for providing Cartesian & Attitude location using

the PC's computational power, rather than the EVB. This results in a significant savings in time.

FAMEMAIN. Code now exists to transmit Calibration Coeffients to PC upon receipt of

request as noted below in Revised Message Format Chart (Table 6).

FAMECAL. Before saving calibration coeffients to SRAM, their values are displayed so that

the user can decide if they are appropriate.

FAMEPC, FAMEMAIN, & FAMECAL. A number of variables' names were changed to make

the programs more consistent.

D.2.9 Release 2.1, May 27, 1992 Bugs Fized.
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Table 6. Revised Message Format Chart

e Key: S = Start Char, s = Stop Char, - = Servo Control Value, % = Checksum
Origin [Message I Message String

PC Control Servos SC_-------- %s (chars 2-11 servo con. vals.)
PC Req. Potentiometer Vals. SQs
PC Request Position Values SRs
PC Control Servos &

Req. Potentiometer Vals. SS -------- %
PC Control Servos & &

Request Position Values ST -------- %s
PC Request Calibration Coef SYs

EVB Ack of Servo Control SAs
EVB Potentiometer Values SO,AZpot(2),ROLLpot(3),ELpot(4),YAWpot(5),

Hpot(6),PITCHpot(7),YawDot(8-9),
Time Stamp(10-12),%s

EVB Position Values SPX(2-3),Y(4-5),Z(6-7),RoUl(8-9),
Pitch(10-11),Yaw(12-13),YawDot(14-15),%s

EVB Calibration Coefficients SV,AZslope(2-5),ROLLslope(6-9),
ELslope(10-13), YAWslope(14-17),
Hslope(18-21),PITCHslope(22-25),
AZdcOffset(26),ROLLdcOffset(27),
ELdcOffset(28), YAWdcOffset(29),
HdcOffset(30),PITCHdcOffset(31),%s

D.2.9.1 FAMEPC. FAMEPC can now be changed between COM 1 & COM 2. Previously the

command to select COM 2 wouldn't work.

The code for awaiting acknowledgement from the EVB has been enhanced. The default delay is 0

ms between transmissions, and it no longer has any relation to the amount of time that FAMEPC

will wait before timing out due to a NAK (no acknowledgement$) from the EVB. FAMEPC is

internally set to time out if it doesn't receive a response from the EVB after 3 seconds.

Version 2.0 of FAMEPC concatenated position integers from the EVB into unsigned values. This

generated erroneous values for the position measurements sent from the EVB. Version 2.1

corrected this bug.

D.2.9.-2 Modifications.
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OVERALL. The FAME package now supports the measurement of raw (uncalibrated)

potentiometer measurements, and FAMEMAIN will also send position or potentiometer data to

the PC as a part of a Servo control request. The new chart of PC/EVB Message formats is in

Table 7.

Table 7. New Chart of PC/EVB Message Formats

[ Key: S = Start Char, s = Stop Char, - = Servo Control Value, % = Checksum fl
Origin Message Message String

PC Control Servos SC -------- %s (chars 2-11 servo con. vals.)
PC Req. Potentiometer Vals. SQs
PC Request Position Values SRs
PC Control Servos &

Req. Potentiometer Vals. SS ---------- %s
PC Control Servos & &

Request Position Values ST -------- %s
EVB Ack of Servo Control SAs
EVB Potentiometer Values SO,AZpot(2),ROLLpot(3),ELpot(4),YAWpot(5),

Hpot(6),PITCHpot(7),YawDot(8-9),
Time Stamp(10-12),%s

EVB Position Values SPX(2-3),Y(4-5),Z(6-7),Roll(8-9),
I Pitch(10-11),Yaw(12-13),YawDot(14-15),%s

Upon requesting the Potentiometer data using FAMEPC, the user receives an 8 bit response from

the 6 potentiometers, a 16 bit measurement of yaw dot, and a 24 bit value of the internal clock on

the EVB sampled at the end of the function that triggers the A/D converter. The actual clock

consists of 16 bits; however, an ISR has been added that increments an 8 bit variable at each

overflow of the timer.

FAMEPC has been upgraded to measure a step response from the helicopter. This routine

prompts the user for the file name in which to store the data, for which Servo to provide the step

(Throttle, Aileron, Elevator, Rudder or Collective), and for the change in the value of the

specified servo.

Next, the routine places the user into the "Servo Control with Keyboard" mode so that the user

can adjust the helicopter to the desired position. Upon pressing the (I) key, FAMEPC requests 5
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potentiometer measurements, changes the value of the specified servo, and requests 16 more

potentiometer measurements. This data is stored into the PC's memory in real time, and is

transferred to the file after the impulse is measured. An asterix is placed next to the

measurement that occurs immediately after the step response is executed. The file also contains

the information specified by the user preceding the step pulse, as well as the setting of the Extra

delay between requests value.

We at George Mason intend to measure the first step responses from the aileron and elevator by

keeping the helicopter tied down with a vise, thus paying particular attention to the pitch and roll

measurements.

TIME SPANS. One cycle of a position request & response takes 150 ms. This consists of:

PC TX to EVB A/D convcal EVB TX to PC PC dispiay data
3 ms 95 ms 18 ms 37 ms

One cycle of the new potentiometer request & response uses only 60 ms.

I PC TX to EVB A/D conv. EVB TX to PCI PC display dataI
3 ms 2 ms 15.5 ms 39.5 ms

Darrell Duane

dduane~fame.gmu.edu

George Mason University Electrical & Computer Engineering

November 20, 1992

D.3 Report on the Fast Adaptive Maneuvering Ezperiment (FAME)

A copy of the Report on the Fast Adaptive Maneuvering Experiment (FAME) can be found

accompanying the AFIT FAME apparatus. The report is also available in PostScript format via
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anonymous FTP to "fame.gmu.edu". It is strongly advised to read the entire report along with

all supporting documentation prior to any attempts at manual flight control.

D.S.1 Changes to FAME Report. The following are a list of changes and addenda to the

report as a result of the experimentation conducted in the course of the research for this thesis.

"* page 9, section 2.2, line 3. "There are two switches on the plate which supports the

helicopter." These switches are now attached to the landing strut of the helicopter. The

switches were moved to permit easy removal of the helicopter for maintenance and

free-flight.

"* page 10, section 2.2.1. Additional Comment: The rudder control servo, located directly

below the speed controller on the helicopter, has been repositioned so that the servo shaft is

located on the opposite side of the helicopter. This was necessary due to a rudder control

reversal.

"* page 13, section 2.3.2. Additional comment: A 9.6 VDC trickle charger has been purchased

in the course of this research. It will fully recharge the Nicad battery pack in 12-16 hours.

Also, three 12 VDC Gel-Cell batteries are also available for use. It is important to keep the

Gel-Cells fully charged, especially when storing the batteries for long periods of time.

"* page 19, section 3.9. The red collar has been modified so that it will completely support the

helicopter when not flying and will drop away as the it gains altitude. This change helps

reduce adverse yaw as the motor is run up to flight speed.

"* page 20, section 3.9. Fourth paragraph: A metal stop has been added to the yaw

potentiometer mount to limit the yaw range of motion. As delivered, the yaw range of

motion exceeded the yaw potentiometer range. The yaw range is approximately +90*.

"* page 20, section 3.9. Last paragraph: There is not screw/nut pair on the collar.
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"* page 21, section 3.10. Connectors have been added to permit quick and easy removal of the

helicopter from the flight stand. These connectors are also standard R/C type to permit

connection to a standard R/C receiver for free-flight control. Also, the helicopter has been

secured to the stand using plastic wire wraps, again to permit easy removal.

"* page 23, section 5. The primary point of contact for FAME at George Mason University is

presently Darrrel Duane, E-mail dduaneOmasonl.gmu.edu.

"* appendices 6.1 through 6.4. The supporting software for FAME has changed several times

since the report was issued. If desired, the code for FAMEPC versions 2.1 through 6.0 is

available through FTP with "fame.gmu.edu." Appendix A contains the modified code

listing used in this research.

"* appendix 6.5. Additional drawings are provided documenting the DOF collar modification.

D.4 AFIT FAME User's Guide

D.4.1 Introduction. The following provides a brief overview of the setup and operation of the

AFIT Fast Adaptive Maneuvering Experiment (FAME) apparatus. Prior to any attempt at

operating the FAME apparatus, recommend a thorough review of the following documents:

1. Report on Fast Adaptive Maneuvering Experiment (FAME) ((5))

2. Kalt Electric Helicopter Baron Whisper Instruction Manual (7)

3. SKYLARK R/C Helicopter Flight Simulator Users Manual (3)

4. Ray's Complete Helicopter Manual R/C (6) (optional)

D.4.2 Hardware. The following is a list of hardware items for the AFIT FAME apparatus:

9 386-based (minimum) PC with at least one comm port

* Skylark controller and I/O card
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"* FAME apparatus

- KALT Whisper Electric Helicopter

- Flitemaster Jr. Training Stand (instrumented)

- Nicad Battery, 1350 mAh

- Motorola MC68HC11 microcontroller unit (MCU)

- MCU Power Supply

"* One (1) 9.6V Nicad Recharger, Radio Shack

"* Three (3) 12V Power Sonic Gel-Cell Batteries

"* Two (2) 25 lb concrete counterweights

D.4.3 Software Installation. The following is a list of the MS-DOS software necessary to

maintain and operate the FAME:

"* Operation

1. MS-DOS 2.0 or higher

2. FAMEPC 6.0 (modified 12 Oct 93)

3. GENERJC.CAL

"• Maintenance

1. FAMEMAIN.0

2. WRITEJMP.0

3. PROCOMM or some other communications program

4. Borland C or another MS-DOS based C-compiler
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FAME will run from a floppy, but if possible, install FAME on the PC harddrive.

The MS-DOS file "generic.cal" must also be included in the same directory. This file provides

values for deriving state values from potentiometer readings. Without this file, the state values

will alway read zero.

D4.4 Operational Instructions. To start the FAME program, at MS-DOS prompt type

FAMPC. The FAME menu should appear (Figure 25).

D.4.4.1 Menu Selection Summary.

"* (J) - allows joystick control of the helicopter, but does not record the state or servo values.

"* (G) - activates control of the helicopter using the joystick and stores the servo and state

values in the fie "filel.trn". Recording time is limited to approximately thirty seconds. If

allowed to record for a longer period, the program empties the file and no longer records

data. Also, any subsequent recordings will overwrite the data currently in "fllel.trn". To

save the data, after each recording rename "filel.trn." The format of "fllel.trn" as read left

to right: time(sec), elevator, aileron, throttle, collective, rudder, pitch, roll, altitude,

y-coordinate, yaw, x-coordinate, and yaw-dot.

"* (C) - calibrates the joystick and stores values in "joy.cal".

"* (S) - Displays realtime state values (pitch, roll, alt, y-coord, yaw, x-coord, yaw-dot).

"* (X) - Display realtime raw potentiometer values (H pot, Az pot, El pot, pitch, roll, yaw,

gyro).

* (Q) - Exit program

D.-4.5 Flight Operation.
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Figure 25. FAMEPC Main Menu
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WARNING. Although small and battery powered, the Kalt Helicopter is not a toy. Strongly

advise reading all documentation on the Kalt Helicopter, FAME apparatus, with special attention

paid to the warning and safety recommendations. Prior to attempting to operate the FAME

helicopter, also strongly recommend spending time with the SKYLARK simulator program. It is

also advisable to spend a few hours of instruction with an experienced R/C helicopter pilot.

The following is a step-by-step guide to the operation of the AFIT FAME apparatus. It is only a

guide and is not intended to stand alone. The user should still read all accompanying

documentation on FAME and the AFIT FAME apparatus.

1. Ensure flight area is clear of all obstacles within the flight radius of the FAME apparatus.

2. Place the FAME apparatus on a smooth surface (floor). Place counterweights on the

plywood platform opposite the helicopter. Also place the MCU power supply and the

helicopter power supply (batteries) on the platform. Connect the RS-232 to the PC.

Connect all power. By hand, move the training stand through all range of motion while

checking for binding or wires caught in the training stand joints.

3. To prevent accidental throttle application, DO NOT activate the motor (press the red

button) while the FAME program is in joystick control (J) or (G) at this point. When

starting joystick control, ensure the throttle is set at lowest level (full down).

4. Turn on all power to the PC, MCU and helicopter. DO NOT press the red button near the

helicopter power switch at this time. A high pitched whine should be heard from the

helicopter gyro and the LED indicator on the motor controller should be green. If not, then

power is not being provided to the helicopter. Check power leads and the 30 Amp fuse on

the motor controller.

5. Start FAMEPC by typing "famepc" at the MS-DOS prompt. Check communications to the

MCU by selecting (S) or (X). The appropriate state or potentiometer values should be seen.

If not, power down and recheck all connections.
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6. If joystick has not been previously calibrated, select (C) and follow instructions to calibrate

joystick. The calibration data is stored on disk in "joystick.cal". Calibration will not be

necessary later.

7. Select (J) or (G). Check flight control by moving the joystick controls and observing servo

movements. Check throttle by observing LED readout on the motor controller. LED should

change from green to yellow then red as the throttle is increased. Hit any key to terminate

joystick control.

8. Ensure the area around the helicopter rotor is clear. Check that the throttle is set at lowest

position (full down). Select (J) or (G) to activate joystick control. Check the LED readout

on the speed controller. If green, it is safe to enable the motor by pressing the red button on

the helicopter. Move to a safe distance and slowly apply throttle while observing the main

and tail rotors. Throttle down immediately if any unusual vibration occurs or the rotors

strike an object. If helicopter begins to perform erratically or becomes uncontrollable,

immediately power down the helicopter by disconnecting the battery or DC power supply.

Alternately, turn of the MCU power supply. This will cause all servos and the motor

controller to return to the neutral setting.

9. To end flight control, slowly move the throttle to the lowest position. After all movement

has stopped strike any key to terminate joystick control. Place main power switch on

helicopter in the "off" position.

10. If subsequent flights are to be recorded, rename "ffilel.trn" or the data recorded will be

overwritten by the newer data.

D.-4.6 Troubleshooting Guide. The following table summarizes some of the more common

problems encountered when operating FAMEPC.
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Table 8. Troubleshooting Guide

Problem Possible Cause Solution

Receiving NAKs after No data path Check RS-232 connection
selecting (S) or (X)

No power to MCU Check power to MCU

Wrong port Check COMI

MCU memory erased Reload FAMEMAIN.0
and/or WRITEJMP.0

Jumper J4 on MCU Check J4 in 2-3
in wrong position position

Data file fails to record Disk is full Remove files as necessary

Flight time was Record data again
longer than 30 seconds over shorter time

126



Bibliography

1. Antsaklis, Panos J. "Neural Networks in Control Systems," IEEE Control Systems
Magazine, 12 (April 1992).

2. Calvin, James B., Jr. ETANN Hardware Implementation for Radar Emitter Identification.
MS thesis, Air Force Institute of Technology (AETC), 1992.

3. digital Wonder Works, Inc., P.O. Box 3118, Ann Arbor, MI 48106. Skylark R/C Helicopter
Flight Simulator User's Manual, Version 1.03.

4. Hertz, John and others. Introduction to the Theory of Neural Computation. Redwood City,
CA: Addison-Wesley Publishing Company, 1991.

5. Hintz, Kenneth J. Report on the Fast Adaptive Maneuvering Ezperiment (FAME). Technical
Report AFOSR-91-0372, George Mason University, March 1992.

6. Hostetler, Ray. Ray's Complete Helicopter Manual (3rd Edition). Sierra Madre, CA: R/C

Modeler Corporation, 1991.

7. Kalt Sangyo Co., Ltd., 1447-1 Higashi-Tanaka, Gotenba, Shizuoka 412, Japan. Kalt Electric
Helicopter Baron Whisper Instruction Manual.

8. Lehr, Michael. Adaptive Multisou-e Decision-Making. Technical Report
BRDE-ISL/TR-1/1, Stanford Uriversity, April 1992.

9. Lindsey, Randall L. Function Prediction Using Recurrent Neural Networks. MS thesis, Air
Force Institute of Technology (AETC), 1991.

10. Magnus, Jan R. and Heinz Neudecker. Matriz differential Calculus with Applications in
Statistics and Econometrics. New York: John Wiley and Sons, 1988.

11. Narendra, Kumpati S. and Snehasis Mukhopadhyay. "Intelligent Control Using Neural
Networks," IEEE Control Systems Magazine, 12 (April 1992).

12. Nguyen, Derrick H., "Re: NN for Self-Learning Adaptive Control." Electronic mail received
October 28, 1993.

13. Nguyen, Derrick H. and Bernard Widrow. "Neural Networks for Self-Learning Control
Systems," IEEE Control Systems Magazine, 10 (April 1990).

14. Prouty, Raymond W. Helicopter Performance, Stability, and Control. Malabar, FL: Robert
E. Krieger Publishing Co., Inc., 1990.

15. Robinson, Anthony John. Dynamic Error Propagation Networks. PhD dissertation,
Cambridge University, 1989.

16. Rogers, Steven K. and others. An Introduction to Biological and Artificial Neural Networks.
Air Force Institute of Technology (AETC), 1990.

17. Scharf, Louis L. Statistical Signal Processing, Estimation and Time Series Analysis.
Reading, MA: Addison-Wesley Publishing Company, 1991.

18. Schauf, Charles L. and others. Human Physiology, Foundations and Frontiers. St. Louis,
MO: Times Mirror/Mosby College Publishing, 1990.

19. Schley, Charles and others. "Neural Networks Structured for Control Applications to Aircraft
Landing." Advances in Neural Information Processing Systems 3 edited by Richard P.
Lippman and others, 415-421, San Mateo, CA: Morgan Kaufmann Publishers, 1991.

20. Seddon, J. Basic Helicopter Aerodynamics. Washington, DC: American Institute of
Aeronautics and Astronautics, Inc., 1990.

127



21. Tar, Gregory L. Multi-Layer Feedforward Neural Networks for Image Segmentation. PhD
dissertation, Air Force Institute of Technology (AETC), 1991.

22. Widrow, Bernard and Jr. M.E. Hoff. "Adaptive Switching Circuits." 1960 IRE WESCON
Convention Record, Part 4. 1960.

23. Wu, Q. H. and others. "A Neural Network Regulator for Turbogenerators," IEEE
Transactions on Neural Networks, 3(1) (January 1992).

128



Vita

Captain Ronald E. Setzer was born June 14, 1962 in Tokyo, Japan. After graduating from

Lincoln County High School in Panaca, Nevada, he was accepted to and attended the United

States Air Force Academy in Colorado Springs, Colorado. Graduating in May 1984 with a

Bachelor of Science in Electrical Engineering, he was assigned to duty at the 2nd Combat

Communications Group in Patrick AFB, Florida. In 1986 he was transferred to the 4th Combat

Communications Squadron in Yokota AB, Japan. While stationed in Japan, he returned to

Florida to complete his Masters Degree in Business Administration, awarded in December 1987.

In November 1988, he was assigned to Operating Location AH, Communications System Program

Office, McClellan AFB, CA. In February 1991, he was transferred to Detachment 16, Electronic

Systems Division, better known as the Peace Shield Site Activation Task Force, Riyadh, Saudi

Arabia. In April 1992, he left Saudi Arabia for the Air Force Institute of Technology at

Wright-Patterson AFB, Ohio. Captain Setzer is unmarried and has no children.

Permanent address: P.O. Box 322
Panaca, NV 89042

129



REPORT DOCUMENTATION PAGE J______________
g~adnfq and = Z=mnn hedt nfede. ad e.seEqan~o a f",vIfl ieOi.#gtwc ioaof nf~ratsnnai Send cI=mn %0`4um 1tZ bada adomea" or MW atheir udet ofof
collector ot ,VIormation. ,ndudlg sugamons tot fteauang thist ow e. to W*ahM09qto deAq•ne e wvce. DW"ecta , otmOfoem ed Rýagon 1.2 215 .oen,
Oavits Iqwav, i ate 1204, ArlinqtOn. !A 22202-4302. WW to "e Office of Managenvem M WW. P&merwom RPedtiw PMpontI"L m.0 Ia. W ,wton. DC 20D03

I. AGENCY USE ONLY (Leave blank) 12"REPORT DATE M3 a REPORT TYP AND DATES COVERED

4. TITLE AND SUBTITLE S. FUNDING NUMBERS

Neural Networks for Dynamic Flight Control

6. AUTHOR(S)
Ronald E. Setzer, Capt, USAF

7. PERFORMING ORGANIZATION NAME(S) AND ADORESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Air Force Institute of Technology, WPAFB OH 45433-6583

9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADORESS(ES) 10. SPONSORING/MONITORING
Capt Steven Suddarth AGENCY REPORT NUMBER

AFOSR/NM
110 Duncan Ave, Suite B115
Boiling AFB DC 20332-6448

11. SUPPLEMENTARY NOTES

12a. DISTRIBUTION /AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Distribution Unlimited

13. ABSTRACT (Maximum 200 words)
This thesis examines the application of artificial neural networks (NNs) to the problem of dynamic flight control.
The specific application is the control of a flying model helicopter. The control interface is provided through
a hardware and software test bed called the Fast Adaptive Maneuvering Experiment (FAME). The NN design
approach uses two NNs: one trained as an emulator of the plant and the other trained to control the emulator.
The emulator neural network is designed to reproduce the flight dynamics of the experimental plant. The
controller is then designed to produce the appropriate control inputs to drive the emulator to a desired final
state.
Previous research in the area of NNs for controls has almost exclusively been applied to simulations. To develop
a controller for a real plant, a neural network must be created which will accurately recreate the dynamics of
the plant. This thesis demonstrates the ability of a neural network to emulate a real, dynamic, nonlinear plant.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Neural Networks, Helicopter Control, Fast Adaptive Manuevering Experiment 140
(FAME) 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION '19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORTI OF THIS PAGE[ OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL

NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)
Pveshbed by ANSI Std. Z1-.16
2MI.02


